login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007578 Number of Young tableaux of height <= 7.
(Formerly M1219)
15
1, 1, 2, 4, 10, 26, 76, 232, 763, 2611, 9415, 35135, 136335, 544623, 2242618, 9463508, 40917803, 180620411, 813405580, 3728248990, 17377551032, 82232982872, 394742985974, 1919885633178, 9453682648281, 47086636037601, 237071351741426, 1205689994416252 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also the number of n-length words w over 7-ary alphabet {a1,a2,...,a7} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a7), where #(z,x) counts the letters x in word z. - Alois P. Heinz, May 30 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Preprint. (Annotated scanned copy)
F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
Juan B. Gil, Peter R. W. McNamara, Jordan O. Tirrell, Michael D. Weiner, From Dyck paths to standard Young tableaux, arXiv:1708.00513 [math.CO], 2017.
FORMULA
a(n) ~ 45/32 * 7^(n+21/2)/(Pi^(3/2)*n^(21/2)). - Vaclav Kotesovec, Sep 11 2013
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 7, []):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 10 2012
# second Maple program
a:= proc(n) option remember;
`if`(n<4, [1, 1, 2, 4][n+1],
((4*n^3+78*n^2+424*n+495)*a(n-1)
+(n-1)*(34*n^2+280*n+305)*a(n-2)
-2*(n-1)*(n-2)*(38*n+145)*a(n-3)
-105*(n-1)*(n-2)*(n-3)*a(n-4)) /
((n+6)*(n+10)*(n+12)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 12 2012
MATHEMATICA
RecurrenceTable[{105 (-3+n) (-2+n) (-1+n) a[-4+n]+2 (-2+n) (-1+n) (145+38 n) a[-3+n]-(-1+n) (305+280 n+34 n^2) a[-2+n]+(-495-424 n-78 n^2-4 n^3) a[-1+n]+(6+n) (10+n) (12+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10}, a, {n, 20}] (* Vaclav Kotesovec, Sep 11 2013 *)
CROSSREFS
Column k=7 of A182172. - Alois P. Heinz, May 30 2012
Sequence in context: A303930 A007123 A220871 * A239079 A007580 A239080
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Apr 10 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 14:23 EDT 2024. Contains 375987 sequences. (Running on oeis4.)