|
|
A007578
|
|
Number of Young tableaux of height <= 7.
(Formerly M1219)
|
|
15
|
|
|
1, 1, 2, 4, 10, 26, 76, 232, 763, 2611, 9415, 35135, 136335, 544623, 2242618, 9463508, 40917803, 180620411, 813405580, 3728248990, 17377551032, 82232982872, 394742985974, 1919885633178, 9453682648281, 47086636037601, 237071351741426, 1205689994416252
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also the number of n-length words w over 7-ary alphabet {a1,a2,...,a7} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a7), where #(z,x) counts the letters x in word z. - Alois P. Heinz, May 30 2012
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 7, []):
# second Maple program
a:= proc(n) option remember;
`if`(n<4, [1, 1, 2, 4][n+1],
((4*n^3+78*n^2+424*n+495)*a(n-1)
+(n-1)*(34*n^2+280*n+305)*a(n-2)
-2*(n-1)*(n-2)*(38*n+145)*a(n-3)
-105*(n-1)*(n-2)*(n-3)*a(n-4)) /
((n+6)*(n+10)*(n+12)))
end:
|
|
MATHEMATICA
|
RecurrenceTable[{105 (-3+n) (-2+n) (-1+n) a[-4+n]+2 (-2+n) (-1+n) (145+38 n) a[-3+n]-(-1+n) (305+280 n+34 n^2) a[-2+n]+(-495-424 n-78 n^2-4 n^3) a[-1+n]+(6+n) (10+n) (12+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10}, a, {n, 20}] (* Vaclav Kotesovec, Sep 11 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|