Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1219 #51 Feb 25 2020 02:09:38
%S 1,1,2,4,10,26,76,232,763,2611,9415,35135,136335,544623,2242618,
%T 9463508,40917803,180620411,813405580,3728248990,17377551032,
%U 82232982872,394742985974,1919885633178,9453682648281,47086636037601,237071351741426,1205689994416252
%N Number of Young tableaux of height <= 7.
%C Also the number of n-length words w over 7-ary alphabet {a1,a2,...,a7} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a7), where #(z,x) counts the letters x in word z. - _Alois P. Heinz_, May 30 2012
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A007578/b007578.txt">Table of n, a(n) for n = 0..1000</a>
%H Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/patterns2019.pdf">Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata</a>, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
%H F. Bergeron, L. Favreau and D. Krob, <a href="/A007578/a007578.pdf">Conjectures on the enumeration of tableaux of bounded height</a>, Preprint. (Annotated scanned copy)
%H F. Bergeron, L. Favreau and D. Krob, <a href="http://dx.doi.org/10.1016/0012-365X(94)00148-C">Conjectures on the enumeration of tableaux of bounded height</a>, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
%H Juan B. Gil, Peter R. W. McNamara, Jordan O. Tirrell, Michael D. Weiner, <a href="https://arxiv.org/abs/1708.00513">From Dyck paths to standard Young tableaux</a>, arXiv:1708.00513 [math.CO], 2017.
%H <a href="/index/Y#Young">Index entries for sequences related to Young tableaux.</a>
%F a(n) ~ 45/32 * 7^(n+21/2)/(Pi^(3/2)*n^(21/2)). - _Vaclav Kotesovec_, Sep 11 2013
%p h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
%p end:
%p g:= proc(n, i, l) option remember;
%p `if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,
%p g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
%p end:
%p a:= n-> g(n, 7, []):
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Apr 10 2012
%p # second Maple program
%p a:= proc(n) option remember;
%p `if`(n<4, [1, 1, 2, 4][n+1],
%p ((4*n^3+78*n^2+424*n+495)*a(n-1)
%p +(n-1)*(34*n^2+280*n+305)*a(n-2)
%p -2*(n-1)*(n-2)*(38*n+145)*a(n-3)
%p -105*(n-1)*(n-2)*(n-3)*a(n-4)) /
%p ((n+6)*(n+10)*(n+12)))
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 12 2012
%t RecurrenceTable[{105 (-3+n) (-2+n) (-1+n) a[-4+n]+2 (-2+n) (-1+n) (145+38 n) a[-3+n]-(-1+n) (305+280 n+34 n^2) a[-2+n]+(-495-424 n-78 n^2-4 n^3) a[-1+n]+(6+n) (10+n) (12+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10}, a, {n, 20}] (* _Vaclav Kotesovec_, Sep 11 2013 *)
%Y Column k=7 of A182172. - _Alois P. Heinz_, May 30 2012
%K nonn
%O 0,3
%A _Simon Plouffe_
%E More terms from _Alois P. Heinz_, Apr 10 2012