The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007576 Number of solutions to k_1 + 2*k_2 + ... + n*k_n = 0, where k_i are from {-1,0,1}, i=1..n. (Formerly M2656) 22
 1, 1, 1, 3, 7, 15, 35, 87, 217, 547, 1417, 3735, 9911, 26513, 71581, 194681, 532481, 1464029, 4045117, 11225159, 31268577, 87404465, 245101771, 689323849, 1943817227, 5494808425, 15568077235, 44200775239, 125739619467 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also, number of maximally stable towers of 2 X 2 LEGO blocks. REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). P. J. S. Watson, On "LEGO" towers, J. Rec. Math., 12 (No. 1, 1979-1980), 24-27. LINKS Ray Chandler, Table of n, a(n) for n = 0..2106 (terms < 10^1000; first 101 terms from T. D. Noe) D. Andrica and O. Bagdasar, Some remarks on 3-partitions of multisets, Electron. Notes Discrete Math., TCDM'18 (2018). Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435. Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019). Steven R. Finch, Signum equations and extremal coefficients [Broken link] Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author] P. J. S. Watson, On "LEGO" towers, J. Rec. Math., 12 (No. 1, 1979-1980), 24-27. (Annotated scanned copy) Index entry for sequences related to LEGO blocks FORMULA Coefficient of x^(n*(n+1)/2) in Product_{k=1..n} (1+x^k+x^(2*k)). Equivalently, the coefficient of x^0 in Product_{k=1..n} (1/x^k + 1 + x^k). - Paul D. Hanna, Jul 10 2018 a(n) ~ 3^(n + 1) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 11 2018 a(n) = (1/(2*Pi))*Integral_{t=0..2*Pi} ( Product_{k=1..n} (1+2*cos(k*t)) ) dt. - Ovidiu Bagdasar, Aug 08 2018 EXAMPLE For n=4 there are 7 solutions: (-1,-1,1,0), (-1,0,-1,1), (-1,1,1,-1), (0,0,0,0), (1,-1,-1,1), (1,0,1,-1), (1,1,-1,0). MATHEMATICA f[0] = 1; f[n_] := Coefficient[Expand@ Product[1 + x^k + x^(2k), {k, n}], x^(n(n + 1)/2)]; Table[f@n, {n, 0, 28}] (* Robert G. Wilson v, Nov 10 2006 *) PROG (Maxima) a(n):=coeff(expand(product(1+x^k+x^(2*k), k, 1, n)), x, binomial(n+1, 2)); makelist(a(n), n, 0, 24); CROSSREFS Cf. A007575, A063865, A039826. Sequence in context: A124696 A081669 A086821 * A322913 A167539 A223167 Adjacent sequences: A007573 A007574 A007575 * A007577 A007578 A007579 KEYWORD easy,nonn AUTHOR Simon Plouffe, Robert G. Wilson v and Vladeta Jovovic EXTENSIONS More terms from David Wasserman, Mar 29 2005 Edited by N. J. A. Sloane, Nov 07 2006. This is a merging of two sequences which, thanks to the work of Søren Eilers, we now know are identical. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:58 EDT 2024. Contains 371906 sequences. (Running on oeis4.)