Signum Equations and Extremal Coefficients

STEVEN FINCH

February 7, 2009

Let $a(n)$ denote the number of sign choices $+$ and $-$ such that

$$\pm 1 \pm 2 \pm 3 \pm \cdots \pm n = 0$$

and $b(n)$ denote the number of solutions of

$$\varepsilon_1 \cdot 1 + \varepsilon_2 \cdot 2 + \varepsilon_3 \cdot 3 + \cdots + \varepsilon_n \cdot n = 0$$

where each $\varepsilon_j \in \{-1, 0, 1\}$. It can be proved that $[1, 2]$

- $a(n)$ is the coefficient of $x^{n(n+1)/2}$ in the polynomial $\prod_{k=1}^{n} (1 + x^{2k})$,
- $b(n)$ is the coefficient of $x^{n(n+1)/2}$ in the polynomial $\prod_{k=1}^{n} (1 + x^k + x^{2k})$.

Clearly $a(n) = 0$ when $n \equiv 1, 2 \pmod{4}$. If we think of sign choices as independent random variables with equal weight on $\{-1, 1\}$, then

$$E \left(\sum_{k=1}^{n} \pm k \right) = 0, \quad \text{Var} \left(\sum_{k=1}^{n} \pm k \right) = \frac{n(n+1)(2n+1)}{6} \sim \frac{n^3}{3}$$

as $n \to \infty$. By the Central Limit Theorem,

$$P \left(\sqrt{3n^{-3/2}} \sum_{k=1}^{n} \pm k \leq x \right) \sim \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp \left(-\frac{t^2}{2} \right) dt$$

which implies that $[3, 4]$

$$P \left(\sum_{k=1}^{n} \pm k = 0 \right) \sim s \sqrt{\frac{3}{2\pi}} n^{-3/2} \exp \left(-\frac{x^2}{2} \right) \bigg|_{x=0}$$

Copyright © 2009 by Steven R. Finch. All rights reserved.
where $s = 1 - (-1) = 2$ is the span of the distribution of \pm; hence \[5, 6\]
\[
a(n) \sim \sqrt{\frac{6}{\pi}} n^{-3/2} 2^n.
\]
In the same way,
\[
b(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2} 3^{n+1}.
\]
Let $c(n)$ denote the number of sign choices such that
\[
\pm 1 \pm 2 \pm 3 \pm \cdots \pm n = \pm 1 \pm 2 \pm 3 \pm \cdots \pm n.
\]
Here \[7\]
\[c(n) \text{ is the coefficient of } x^{(n+1)/2} \text{ in the polynomial } \prod_{k=1}^{n} (1 + x^k)^2\]
and \[8, 9, 10, 11\]
\[c(n) \sim \sqrt{\frac{3}{\pi}} n^{-3/2} 2^n.
\]
Define \[12\]
\[
\alpha(n) \text{ to be the maximal coefficient in the polynomial } \prod_{k=1}^{n} (1 + x^{2k}),
\]
\[
\beta(n) \text{ to be the maximal coefficient in the polynomial } \prod_{k=1}^{n} (1 + x^k + x^{2k}),
\]
\[
\gamma(n) \text{ to be the maximal coefficient in the polynomial } \prod_{k=1}^{n} (1 + x^k)^2.
\]
The first of these has an immediate combinatorial interpretation: $\alpha(n)$ is the number of sign choices such that
\[
\pm 1 \pm 2 \pm 3 \pm \cdots \pm n \text{ is 0 or 1.}
\]
While $\beta(n)$ seems not to have such a representation, the last sequence satisfies trivially $\gamma(n) = c(n)$ always.

We look at several more examples. Define \[13\]
\[
\lambda_{\max}(n) \text{ to be the maximal coefficient in } \prod_{k=1}^{n} (1 - x^{2k})
\]
and $-\lambda_{\min}(n)$ to be the corresponding minimal coefficient;
\(\mu_{\text{max}}(n)\) to be the maximal coefficient in \((-1)^n \prod_{k=1}^{n} (1 - x^k)^2\)

and \(- \mu_{\text{min}}(n)\) to be the corresponding minimal coefficient.

Only the third of these possesses a clear simplification:

\[\mu_{\text{max}}(n)\] is the coefficient of \(x^{n(n+1)/2}\) in \((-1)^n \prod_{k=1}^{n} (1 - x^k)^2\)

and the asymptotics

\[\mu_{\text{max}}(n)^{1/n} \sim 1.48... \sim 2 e^{-0.29...}\]

are of interest [14, 15]. Greater understanding of the other sequences is desired.

0.1. Number Partitioning. What is the number of ways to partition the set \(\{1, 2, \ldots, n\}\) into two subsets whose sums are as nearly equal as possible? If \(n \equiv 0, 3 \text{ mod } 4\), the answer is \(\alpha(n)\); if \(n \equiv 1, 2 \text{ mod } 4\), the answer is \(\alpha(n)/2\). In the former case, the subsets have the same sum; in the latter, the subsets have sums that differ by 1 [16, 17]. Partitioning arbitrary sets of \(n\) integers, each typically of order \(2^n\), is an NP-complete problem. The ratio \(m/n\) characterizes the difficulty in searching for a perfect partition (one in which subset sums differ by at most 1). A phase transition exists for this problem (at \(m/n = 1\), in fact) and perhaps similarly for all NP problems [17, 18, 19].

As an aside, we observe that

\[\lambda_{\text{max}}(n)\] is the coefficient of \(x^{n(n+1)/2}\) in the polynomial \(\prod_{k=1}^{n} (1 - x^{2k})\)

for \(n \equiv 0 \text{ mod } 4\), but this fails elsewhere (a conjectural relation involving \(x^{(n+1)^2/2}\) coefficients for \(n \equiv 3 \text{ mod } 4\) fails apart when \(n = 27\)). It seems to be true that

\[\lambda_{\text{max}}(n)^{1/n} \sim 1.21... \sim 2 e^{-0.50...}\]

as \(n \to \infty\) via multiples of 4.

As another aside, if \(d(n)\) is the number of solutions of

\[\varepsilon_1 \cdot 1 + \varepsilon_2 \cdot 2 + \varepsilon_3 \cdot 3 + \cdots + \varepsilon_n \cdot n = \varepsilon_{-1} \cdot 1 + \varepsilon_{-2} \cdot 2 + \varepsilon_{-3} \cdot 3 + \cdots + \varepsilon_{-n} \cdot n,\]

then [20]

\(d(n)\) is the coefficient of \(x^{n(n+1)}\) in the polynomial \(\prod_{k=1}^{n} (1 + x^k + x^{2k})^2\)

(in fact, it is the maximal such coefficient)
and
\[d(n) \sim \frac{1}{2\sqrt{2\pi}} n^{-3/2} 3^{2n+1}. \]

This grows more quickly than \(b(n) \), of course. We wonder what else can be said in both cases. For example, what is the mean percentage of 0s in \(\{e_j\} \) taken over all solutions, as \(n \to \infty \)? It may well be 1/3 for both, but it may be \(> 1/3 \) for one or the other.

0.2. Addendum. Define a function \(G : (0, 1) \to \mathbb{R} \) by
\[G(x) = \int_0^1 \ln (\sin(\pi xt)) \, dt. \]

There is a unique point \(x_0 = 0.7912265710... \) at which \(G \) attains its maximum value \(G(x_0) = -0.4945295653... \). Let
\[r = \exp(2G(x_0)) = 0.3719264606... = \frac{1}{4} (1.4877058426...), \]
\[C = \frac{4\sin(\pi x_0)}{x_0} \sqrt{-G''(x_0)} = 2.4057458393... \]

then [21]
\[\mu_{\max}(n) \sim C \left(\frac{4r}{\sqrt{n}}\right)^n \]
as \(n \to \infty \), making impressively precise our earlier conjecture. An analogous formula for \(\lambda_{\max}(n) \) for \(n \equiv 0 \mod 4 \) remains open.

References

