The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206847 a(n) = Sum_{k=0..n} binomial(n^2, k^2) * binomial(n^2, (n-k)^2). 5
 1, 2, 18, 2270, 3678482, 51789416252, 9723940840418814, 13783866167176942874214, 260749663122506218247699587346, 35385577627626083328957267246097557212, 64138056102285851525440919122006580387539950268, 814449089808478655249485968539593253265395820497817710866 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ignoring the initial term a(0), equals the logarithmic derivative of A206846. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..45 FORMULA From Vaclav Kotesovec, Mar 03 2014: (Start) Limit n->infinity a(n)^(1/n^2) = 16/(3*sqrt(3)). a(n) ~ c * 2^(4*n^2+3) / (Pi * n^2 * 3^(3*n^2/2+1)), where c = JacobiTheta3(0,9*exp(-16/3)) = EllipticTheta[3, 0, 9*Exp[-16/3]] = 1.08691022925895131... if n is even, and c = JacobiTheta2(0,9*exp(-16/3)) = EllipticTheta[2, 0, 9*Exp[-16/3]] = 0.91485129628884995... if n is odd. (End) EXAMPLE L.g.f.: L(x) = 2*x + 18*x^2/2 + 2270*x^3/3 + 3678482*x^4/4 + 51789416252*x^5/5 +... where exponentiation yields the g.f. of A206846: exp(L(x)) = 1 + 2*x + 11*x^2 + 776*x^3 + 921193*x^4 + 10359730908*x^5 +... Illustration of terms: by definition, a(1) = C(1,0)*C(1,1) + C(1,1)*C(1,0); a(2) = C(4,0)*C(4,4) + C(4,1)*C(4,1) + C(4,4)*C(4,0); a(3) = C(9,0)*C(9,9) + C(9,1)*C(9,4) + C(9,4)*C(9,1) + C(9,9)*C(9,0); a(4) = C(16,0)*C(16,16) + C(16,1)*C(16,9) + C(16,4)*C(16,4) + C(16,9)*C(16,1) + C(16,16)*C(16,0); ... Numerically, the above evaluates to be: a(1) = 1*1 + 1*1 = 2; a(2) = 1*1 + 4*4 + 1*1 = 18; a(3) = 1*1 + 9*126 + 126*9 + 1*1 = 2270; a(4) = 1*1 + 16*11440 + 1820*1820 + 11440*16 + 1*1 = 3678482; a(5) = 1*1 + 25*2042975 + 12650*2042975 + 2042975*12650 + 2042975*25 + 1*1 = 51789416252; ... MATHEMATICA Table[Sum[Binomial[n^2, k^2] * Binomial[n^2, (n-k)^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n^2, (n-k)^2)*binomial(n^2, k^2))} for(n=1, 20, print1(a(n), ", ")) CROSSREFS Cf. A206846 (exp), A206849, A206851. Sequence in context: A260610 A333164 A076954 * A259654 A060598 A055687 Adjacent sequences: A206844 A206845 A206846 * A206848 A206849 A206850 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 10:29 EDT 2024. Contains 372787 sequences. (Running on oeis4.)