The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206847 a(n) = Sum_{k=0..n} binomial(n^2, k^2) * binomial(n^2, (n-k)^2). 5
1, 2, 18, 2270, 3678482, 51789416252, 9723940840418814, 13783866167176942874214, 260749663122506218247699587346, 35385577627626083328957267246097557212, 64138056102285851525440919122006580387539950268, 814449089808478655249485968539593253265395820497817710866 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ignoring the initial term a(0), equals the logarithmic derivative of A206846.
LINKS
FORMULA
From Vaclav Kotesovec, Mar 03 2014: (Start)
Limit n->infinity a(n)^(1/n^2) = 16/(3*sqrt(3)).
a(n) ~ c * 2^(4*n^2+3) / (Pi * n^2 * 3^(3*n^2/2+1)), where c = JacobiTheta3(0,9*exp(-16/3)) = EllipticTheta[3, 0, 9*Exp[-16/3]] = 1.08691022925895131... if n is even, and c = JacobiTheta2(0,9*exp(-16/3)) = EllipticTheta[2, 0, 9*Exp[-16/3]] = 0.91485129628884995... if n is odd.
(End)
EXAMPLE
L.g.f.: L(x) = 2*x + 18*x^2/2 + 2270*x^3/3 + 3678482*x^4/4 + 51789416252*x^5/5 +...
where exponentiation yields the g.f. of A206846:
exp(L(x)) = 1 + 2*x + 11*x^2 + 776*x^3 + 921193*x^4 + 10359730908*x^5 +...
Illustration of terms: by definition,
a(1) = C(1,0)*C(1,1) + C(1,1)*C(1,0);
a(2) = C(4,0)*C(4,4) + C(4,1)*C(4,1) + C(4,4)*C(4,0);
a(3) = C(9,0)*C(9,9) + C(9,1)*C(9,4) + C(9,4)*C(9,1) + C(9,9)*C(9,0);
a(4) = C(16,0)*C(16,16) + C(16,1)*C(16,9) + C(16,4)*C(16,4) + C(16,9)*C(16,1) + C(16,16)*C(16,0); ...
Numerically, the above evaluates to be:
a(1) = 1*1 + 1*1 = 2;
a(2) = 1*1 + 4*4 + 1*1 = 18;
a(3) = 1*1 + 9*126 + 126*9 + 1*1 = 2270;
a(4) = 1*1 + 16*11440 + 1820*1820 + 11440*16 + 1*1 = 3678482;
a(5) = 1*1 + 25*2042975 + 12650*2042975 + 2042975*12650 + 2042975*25 + 1*1 = 51789416252; ...
MATHEMATICA
Table[Sum[Binomial[n^2, k^2] * Binomial[n^2, (n-k)^2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n^2, (n-k)^2)*binomial(n^2, k^2))}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Cf. A206846 (exp), A206849, A206851.
Sequence in context: A260610 A333164 A076954 * A259654 A060598 A055687
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 15 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 10:29 EDT 2024. Contains 372787 sequences. (Running on oeis4.)