login
A336211
Sum of an infinite series involving generalized harmonic numbers of order 2.
0
1, 0, 8, 8, 8, 5, 7, 1, 4, 0, 9, 6, 1, 6, 6, 7, 0, 5, 7, 2, 3, 2, 3, 4, 3, 1, 7, 1, 4, 7, 0, 2, 7, 1, 5, 2, 8, 3, 9, 4, 2, 7, 9, 8, 7, 3, 2, 1, 4, 7, 8, 2, 3, 8, 7, 6, 4, 0, 8, 0, 5, 3, 2, 5, 0, 9, 0, 3, 9, 3, 0, 9, 5, 0, 9, 7, 5, 0, 6, 5, 2, 1, 9, 5, 4, 0, 5, 5, 3, 5, 5, 1, 2, 5, 3, 4, 4, 4, 2, 8, 9, 5, 8, 6
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number.
Wikipedia, Harmonic number.
FORMULA
Sum_{n >= 2} (H(n-1,2) / n^3) * 2^n / Binomial(2n,n), where H(n-1,2) is the (n-1)th generalized harmonic number of order 2.
Equals Pi^3 * C/24 - Pi * Beta(4) - 3 * Pi^2 * Zeta(3)/128 + 527 * Zeta(5)/256 + Pi^4 * log(2)/384, where C is the Catalan constant and Beta the Dirichlet Beta function.
EXAMPLE
0.108885714096166705723234317147027152839427987321478238764080532509...
MATHEMATICA
Pi^3 Catalan/24 - Pi DirichletBeta[4] - 3Pi^2 Zeta[3] / 128 + 527 Zeta[5] / 256 + Pi^4 Log[2] / 384 // N[#, 104]& // RealDigits // First
CROSSREFS
Sequence in context: A023411 A181122 A023412 * A343392 A343393 A023413
KEYWORD
nonn,cons
AUTHOR
STATUS
approved