OFFSET
3,1
REFERENCES
S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 3..500
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Matching
Eric Weisstein's World of Mathematics, Perfect Matching
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
a(n) = 14*a(n-1) + 145*a(n-2) - 2492*a(n-3) - 5832*a(n-4) + 164332*a(n-5) + 6360*a(n-6) - 5592188*a(n-7) + 5575094*a(n-8) + 111829704*a(n-9) - 176471286*a(n-10) - 1404071060*a(n-11) + 2757391176*a(n-12) + 11493707876*a(n-13) - 26094214040*a(n-14) - 62666476628*a(n-15) + 161092194209*a(n-16) + 229194775110*a(n-17) - 673504262865*a(n-18) - 556186915928*a(n-19) + 1946775340976*a(n-20) + 855365272888*a(n-21) - 3933950269712*a(n-22) - 705783359960*a(n-23) + 5586898052980*a(n-24) - 5586898052980*a(n-26) + 705783359960*a(n-27) + 3933950269712*a(n-28) - 855365272888*a(n-29) - 1946775340976*a(n-30) + 556186915928*a(n-31) + 673504262865*a(n-32) - 229194775110*a(n-33) - 161092194209*a(n-34) + 62666476628*a(n-35) + 26094214040*a(n-36) - 11493707876*a(n-37) - 2757391176*a(n-38) + 1404071060*a(n-39) + 176471286*a(n-40) - 111829704*a(n-41) - 5575094*a(n-42) + 5592188*a(n-43) - 6360*a(n-44) - 164332*a(n-45) + 5832*a(n-46) + 2492*a(n-47) - 145*a(n-48) - 14*a(n-49) + a(n-50).
G.f.: 2*x^3*(529 + 12570*x - 278528*x^2 - 1111096*x^3 + 29622124*x^4 + 15949216*x^5 - 1354335880*x^6 + 1073870160*x^7 + 33231636934*x^8 - 49093408612*x^9 - 484852497568*x^10 + 922702092728*x^11 + 4448623050276*x^12 - 9889298009728*x^13 - 26519860399096*x^14 + 66909591407824*x^15 + 104242913448099*x^16 - 300153880511538*x^17 - 268804327853184*x^18 + 917127529551440*x^19 + 437177534552376*x^20 - 1937370697752896*x^21 - 386856893695952*x^22 + 2851262465341600*x^23 + 31463729114724*x^24 - 2933939639544920*x^25 + 353114911609152*x^26 + 2113468417316080*x^27 - 452714140134072*x^28 - 1064902306141568*x^29 + 302352881352848*x^30 + 373692292484128*x^31 - 126783009087417*x^32 - 90391126093930*x^33 + 35100066280832*x^34 + 14772327002472*x^35 - 6497628908516*x^36 - 1572040067936*x^37 + 799287715544*x^38 + 101192826896*x^39 - 63992712074*x^40 - 3215530756*x^41 + 3212411488*x^42 - 3162664*x^43 - 94666796*x^44 + 3355392*x^45 + 1438440*x^46 - 83696*x^47 - 8091*x^48 + 578*x^49)/((1-x)*(1+x)*(1+4*x+x^2)*(1-4*x+x^2)*(1-2*x-x^2)*(1+2*x-x^2)*(1+8*x+16*x^2+8*x^3+x^4)* (1-14*x+34*x^2-14*x^3+x^4)*(1-8*x+16*x^2-8*x^3+x^4)*(1-4*x^2+x^4)*(1+4*x-4*x^2-4*x^3+x^4)*(1+8*x-10*x^2-8*x^3+x^4)*(1-4*x-4*x^2+4*x^3+x^4)*(1-8*x-10*x^2+8*x^3+x^4)*(1-14*x^2+34*x^4-14*x^6+x^8)).
CROSSREFS
KEYWORD
nonn
AUTHOR
Sergey Perepechko, Jan 09 2015
STATUS
approved