login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253678
Number of perfect matchings in the graph C_8 X C_n.
8
1058, 39952, 155682, 3113860, 19681538, 311853312, 2415542018, 33898728836, 294554220578, 3827188349968, 35866638601250, 442299574618756, 4365923647238658, 51942700201804032, 531410627302657538, 6169093269471927940, 64681086501382749218, 738453913359765339152, 7872683691901209561122, 88873260229652630182276
OFFSET
3,1
REFERENCES
S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.
LINKS
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Matching
Eric Weisstein's World of Mathematics, Perfect Matching
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
a(n) = 14*a(n-1) + 145*a(n-2) - 2492*a(n-3) - 5832*a(n-4) + 164332*a(n-5) + 6360*a(n-6) - 5592188*a(n-7) + 5575094*a(n-8) + 111829704*a(n-9) - 176471286*a(n-10) - 1404071060*a(n-11) + 2757391176*a(n-12) + 11493707876*a(n-13) - 26094214040*a(n-14) - 62666476628*a(n-15) + 161092194209*a(n-16) + 229194775110*a(n-17) - 673504262865*a(n-18) - 556186915928*a(n-19) + 1946775340976*a(n-20) + 855365272888*a(n-21) - 3933950269712*a(n-22) - 705783359960*a(n-23) + 5586898052980*a(n-24) - 5586898052980*a(n-26) + 705783359960*a(n-27) + 3933950269712*a(n-28) - 855365272888*a(n-29) - 1946775340976*a(n-30) + 556186915928*a(n-31) + 673504262865*a(n-32) - 229194775110*a(n-33) - 161092194209*a(n-34) + 62666476628*a(n-35) + 26094214040*a(n-36) - 11493707876*a(n-37) - 2757391176*a(n-38) + 1404071060*a(n-39) + 176471286*a(n-40) - 111829704*a(n-41) - 5575094*a(n-42) + 5592188*a(n-43) - 6360*a(n-44) - 164332*a(n-45) + 5832*a(n-46) + 2492*a(n-47) - 145*a(n-48) - 14*a(n-49) + a(n-50).
G.f.: 2*x^3*(529 + 12570*x - 278528*x^2 - 1111096*x^3 + 29622124*x^4 + 15949216*x^5 - 1354335880*x^6 + 1073870160*x^7 + 33231636934*x^8 - 49093408612*x^9 - 484852497568*x^10 + 922702092728*x^11 + 4448623050276*x^12 - 9889298009728*x^13 - 26519860399096*x^14 + 66909591407824*x^15 + 104242913448099*x^16 - 300153880511538*x^17 - 268804327853184*x^18 + 917127529551440*x^19 + 437177534552376*x^20 - 1937370697752896*x^21 - 386856893695952*x^22 + 2851262465341600*x^23 + 31463729114724*x^24 - 2933939639544920*x^25 + 353114911609152*x^26 + 2113468417316080*x^27 - 452714140134072*x^28 - 1064902306141568*x^29 + 302352881352848*x^30 + 373692292484128*x^31 - 126783009087417*x^32 - 90391126093930*x^33 + 35100066280832*x^34 + 14772327002472*x^35 - 6497628908516*x^36 - 1572040067936*x^37 + 799287715544*x^38 + 101192826896*x^39 - 63992712074*x^40 - 3215530756*x^41 + 3212411488*x^42 - 3162664*x^43 - 94666796*x^44 + 3355392*x^45 + 1438440*x^46 - 83696*x^47 - 8091*x^48 + 578*x^49)/((1-x)*(1+x)*(1+4*x+x^2)*(1-4*x+x^2)*(1-2*x-x^2)*(1+2*x-x^2)*(1+8*x+16*x^2+8*x^3+x^4)* (1-14*x+34*x^2-14*x^3+x^4)*(1-8*x+16*x^2-8*x^3+x^4)*(1-4*x^2+x^4)*(1+4*x-4*x^2-4*x^3+x^4)*(1+8*x-10*x^2-8*x^3+x^4)*(1-4*x-4*x^2+4*x^3+x^4)*(1-8*x-10*x^2+8*x^3+x^4)*(1-14*x^2+34*x^4-14*x^6+x^8)).
CROSSREFS
Row n=4 of A341741.
Sequence in context: A120215 A351770 A202611 * A035760 A107556 A237797
KEYWORD
nonn
AUTHOR
Sergey Perepechko, Jan 09 2015
STATUS
approved