The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253679 Numbers that begin a run of an odd number of consecutive integers whose cubes sum to a square. 8
 23, 118, 333, 716, 1315, 2178, 3353, 4888, 6831, 9230, 12133, 15588, 19643, 24346, 29745, 35888, 42823, 50598, 59261, 68860, 79443, 91058, 103753, 117576, 132575, 148798, 166293, 185108, 205291, 226890, 249953, 274528, 300663, 328406, 357805, 388908, 421763, 456418, 492921, 531320, 571663, 613998, 658373, 704836, 753435, 804218, 857233, 912528, 970151, 1030150, 1092573, 1157468 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers k such that k^3 + (k+1)^3 + ... + (k+M-1)^3 = c^2 has nontrivial solutions over the integers where M is an odd positive integer. To every odd positive integer M corresponds a sum of M consecutive cubes starting at a(n) having at least one nontrivial solution. For n >= 1, M(n) = (2n+1) (A005408), a(n) = M^3 - (3M-1)/2 = (2n+1)^3 - (3n+1) and c(n) = M*(M^2-1)*(2M^2-1)/2 = 2n*(n+1)*(2n+1)*(8n*(n+1)+1) (A253680). The trivial solutions with M < 1 and k < 2 are not considered here. Stroeker stated that all odd values of M yield a solution to k^3 + (k+1)^3 + ... + (k+M-1)^3 = c^2. This was further demonstrated by Pletser. LINKS Vladimir Pletser, Table of n, a(n) for n = 1..50000 Vladimir Pletser, File Triplets (M,a,c) for M=(2n+1) Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015. Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015. R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = (2n+1)^3 - (3n+1). a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Colin Barker, Jan 09 2015 G.f.: -x*(x^2-26*x-23) / (x-1)^4. - Colin Barker, Jan 09 2015 EXAMPLE For n=1, M(n)=3, a(n)=23, c(n)=204. See "File Triplets (M,a,c) for M=(2n+1)" link. MAPLE for n from 1 to 50 do a:=(2*n+1)^3-(3*n+1): print (a); end do: MATHEMATICA a253679[n_] := (2 # + 1)^3 - (3 # + 1) & /@ Range@ n; a253679[52] (* Michael De Vlieger, Jan 10 2015 *) PROG (PARI) Vec(-x*(x^2-26*x-23)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 09 2015 CROSSREFS Cf. A116108, A116145, A126200, A126203, A163392, A163393, A253680, A253681. Sequence in context: A042026 A042028 A265982 * A303411 A069756 A351905 Adjacent sequences: A253676 A253677 A253678 * A253680 A253681 A253682 KEYWORD nonn,easy AUTHOR Vladimir Pletser, Jan 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 22:01 EDT 2024. Contains 374956 sequences. (Running on oeis4.)