login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253680 Numbers c(n) whose square are equal to the sum of an odd number M of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c(n)^2, starting at b(n) (A253679). 7
204, 2940, 16296, 57960, 159060, 368004, 754320, 1412496, 2465820, 4070220, 6418104, 9742200, 14319396, 20474580, 28584480, 39081504, 52457580, 69267996, 90135240, 115752840, 146889204, 184391460, 229189296, 282298800, 344826300, 417972204, 503034840 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Numbers c(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for M being an odd positive integer.
To every odd positive integer M corresponds a sum of M consecutive cubed integers starting at b^3 having at least one nontrivial solution. For n>=1, M(n)=(2n+1) (A005408), b(n) = M^3 -(3M-1)/2 = (2n+1)^3 - (3n+1) (A253679) and c(n) = M*(M^2-1)*(2M^2-1)/2 = 2n*(n+1)*(2n+1)*(8n*(n+1)+1) (A253680).
The trivial solutions with M < 1 and b < 2 are not considered here.
Stroeker stated that all odd values of M yield a solution to b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2. This was further demonstrated by Pletser.
LINKS
R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
FORMULA
c(n) = 2n(n+1)*(2n+1)*(8n*(n+1)+1).
G.f.: 12*x*(x+1)*(17*x^2+126*x+17) / (x-1)^6. - Colin Barker, Jan 09 2015
EXAMPLE
For n=1, M(n)=3, b(n)=23, c(n)=204.
See "File Triplets (M,b,c) for M=(2n+1)" link.
MAPLE
restart: for n from 1 to 50000 do c:=2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): print (c); end do:
MATHEMATICA
f[n_] := 2 n (n + 1) (2 n + 1) (8 n (n + 1) + 1); Array[f, 36] (* Michael De Vlieger, Jan 10 2015 *)
PROG
(PARI) Vec(12*x*(x+1)*(17*x^2+126*x+17)/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 09 2015
(Magma) [2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
CROSSREFS
Sequence in context: A234796 A234789 A099105 * A209790 A348603 A194192
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jan 08 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:54 EST 2023. Contains 367591 sequences. (Running on oeis4.)