login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234789
Number of (n+1) X (1+1) 0..3 arrays with each 2 X 2 subblock having the number of clockwise edge increases less than or equal to the number of counterclockwise edge increases.
1
204, 2504, 30536, 371976, 4530424, 55175944, 671983416, 8184025736, 99672501944, 1213902270984, 14784004509496, 180053035925896, 2192849421966264, 26706512126351624, 325256163423006776, 3961265003235768456
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 15*a(n-1) - 36*a(n-2) + 20*a(n-3).
Conjectures from Colin Barker, Oct 16 2018: (Start)
G.f.: 4*x*(51 - 139*x + 80*x^2) / ((1 - 2*x)*(1 - 13*x + 10*x^2)).
a(n) = (1/129)*2^(-1-n)*(-129*2^(1+2*n) + (2193-191*sqrt(129))*(13-sqrt(129))^n + (13+sqrt(129))^n*(2193+191*sqrt(129))).
(End)
EXAMPLE
Some solutions for n=3:
..2..3....1..2....2..0....2..3....1..0....1..0....2..1....0..1....3..2....1..0
..2..3....0..1....2..0....3..1....3..2....3..2....0..2....0..1....2..0....2..0
..2..2....2..0....3..2....3..1....0..0....2..0....2..1....0..1....2..3....3..0
..0..0....1..3....2..0....0..0....1..1....2..3....2..0....2..3....3..3....1..3
CROSSREFS
Column 1 of A234796.
Sequence in context: A292346 A338153 A234796 * A099105 A253680 A209790
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 30 2013
STATUS
approved