login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A234787
Cubes (with at least two digits) that become squares when their rightmost digit is removed.
1
1000, 64000, 729000, 4096000, 15625000, 46656000, 117649000, 262144000, 531441000, 1000000000, 1771561000, 2985984000, 4826809000, 7529536000, 11390625000, 16777216000, 24137569000, 34012224000, 47045881000, 64000000000
OFFSET
1,1
COMMENTS
With the help of the Nagell-Lutz theorem it is easy to prove that there are no other solutions than those of the form 1000*n^6.
LINKS
Georg Fischer, Table of n, a(n) for n = 1..300 [a(1..204) from Reiner Moewald]
FORMULA
a(n) = 1000*n^6.
From Colin Barker, Dec 15 2019: (Start)
G.f.: 1000*x*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
PROG
(PARI) lista(nn) = {for (n=1, nn, if (((cb = n^3) > 10) && issquare(cb\10), print1(cb, ", ")); ); } \\ Michel Marcus, Jan 10 2014
(PARI) Vec(1000*x*(1 + x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Dec 15 2019
CROSSREFS
Cf. A226354.
Subsequence of A000578.
Sequence in context: A117690 A186936 A185747 * A379591 A029799 A029779
KEYWORD
nonn,base,easy
AUTHOR
Reiner Moewald, Dec 30 2013
STATUS
approved