|
|
A234790
|
|
Number of (n+1) X (2+1) 0..3 arrays with each 2 X 2 subblock having the number of clockwise edge increases less than or equal to the number of counterclockwise edge increases.
|
|
1
|
|
|
2504, 88072, 3015344, 102517088, 3479085232, 118012659040, 4002569571664, 135748608654080, 4603925743188432, 156142204831633856, 5295562097409075888, 179598936405126251936, 6091095934524947013424, 206579449021691878564640
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 47*a(n-1) - 485*a(n-2) + 1429*a(n-3) - 1056*a(n-4) + 208*a(n-5) - 40*a(n-6).
Empirical g.f.: 8*x*(313 - 3702*x + 11300*x^2 - 8422*x^3 + 1659*x^4 - 320*x^5) / (1 - 47*x + 485*x^2 - 1429*x^3 + 1056*x^4 - 208*x^5 + 40*x^6). - Colin Barker, Oct 16 2018
|
|
EXAMPLE
|
Some solutions for n=2:
..3..1..0....0..1..2....0..2..0....0..2..2....1..0..2....3..2..3....1..0..2
..0..1..1....1..2..2....1..3..1....1..3..3....3..3..1....2..1..2....2..0..0
..1..3..0....1..2..0....1..2..3....0..1..1....0..3..1....2..2..3....3..0..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|