login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234786
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no adjacent elements equal and with each 2X2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases
9
76, 484, 484, 3084, 6660, 3084, 19652, 91916, 91916, 19652, 125228, 1269036, 2761748, 1269036, 125228, 797988, 17521780, 83120724, 83120724, 17521780, 797988, 5085004, 241927524, 2502596188, 5465582060, 2502596188, 241927524
OFFSET
1,1
COMMENTS
Table starts
.......76.........484...........3084..............19652................125228
......484........6660..........91916............1269036..............17521780
.....3084.......91916........2761748...........83120724............2502596188
....19652.....1269036.......83120724.........5465582060..........359793857812
...125228....17521780.....2502596188.......359793857812........51845281856108
...797988...241927524....75353928188.....23692759265012......7476894104333052
..5085004..3340355564..2268967605156...1560344155530604...1078605317680077396
.32403076.46121153580.68320694237108.102763262525972764.155614824084934672788
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 7*a(n-1) -4*a(n-2)
k=2: a(n) = 16*a(n-1) -31*a(n-2) +10*a(n-3)
k=3: [order 10]
k=4: [order 25]
k=5: [order 70]
EXAMPLE
Some solutions for n=2 k=4
..2..0..3..1..0....3..1..0..1..3....1..0..2..3..2....2..0..3..0..3
..1..3..2..0..1....1..0..1..0..1....0..2..3..2..0....0..3..0..3..0
..0..1..3..2..3....0..1..2..1..0....1..0..2..0..1....1..0..2..1..3
CROSSREFS
Sequence in context: A205926 A205919 A238918 * A234779 A264475 A363843
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 30 2013
STATUS
approved