login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no adjacent elements equal and with each 2X2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases
9

%I #4 Dec 30 2013 17:15:46

%S 76,484,484,3084,6660,3084,19652,91916,91916,19652,125228,1269036,

%T 2761748,1269036,125228,797988,17521780,83120724,83120724,17521780,

%U 797988,5085004,241927524,2502596188,5465582060,2502596188,241927524

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no adjacent elements equal and with each 2X2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases

%C Table starts

%C .......76.........484...........3084..............19652................125228

%C ......484........6660..........91916............1269036..............17521780

%C .....3084.......91916........2761748...........83120724............2502596188

%C ....19652.....1269036.......83120724.........5465582060..........359793857812

%C ...125228....17521780.....2502596188.......359793857812........51845281856108

%C ...797988...241927524....75353928188.....23692759265012......7476894104333052

%C ..5085004..3340355564..2268967605156...1560344155530604...1078605317680077396

%C .32403076.46121153580.68320694237108.102763262525972764.155614824084934672788

%H R. H. Hardin, <a href="/A234786/b234786.txt">Table of n, a(n) for n = 1..199</a>

%F Empirical for column k:

%F k=1: a(n) = 7*a(n-1) -4*a(n-2)

%F k=2: a(n) = 16*a(n-1) -31*a(n-2) +10*a(n-3)

%F k=3: [order 10]

%F k=4: [order 25]

%F k=5: [order 70]

%e Some solutions for n=2 k=4

%e ..2..0..3..1..0....3..1..0..1..3....1..0..2..3..2....2..0..3..0..3

%e ..1..3..2..0..1....1..0..1..0..1....0..2..3..2..0....0..3..0..3..0

%e ..0..1..3..2..3....0..1..2..1..0....1..0..2..0..1....1..0..2..1..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 30 2013