login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090868
Number of partitions of n such that the set of odd parts has only one element.
1
1, 1, 3, 2, 6, 5, 11, 8, 20, 15, 32, 24, 51, 39, 80, 58, 119, 90, 175, 130, 255, 190, 361, 268, 508, 379, 706, 522, 967, 722, 1313, 974, 1771, 1317, 2363, 1754, 3131, 2330, 4123, 3058, 5388, 4010, 7001, 5200, 9053, 6731, 11631, 8642, 14878, 11068, 18944, 14076
OFFSET
1,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..14572 (terms 1..5000 from Alois P. Heinz)
FORMULA
G.f.: Sum_{m>0} x^(2*m-1)/(1-x^(2*m-1))/Product_{m>0} (1-x^(2*m)).
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t, 1, 0),
`if`(i<1, 0, add(b(n-i*j, i-1, t or j>0 and i::odd),
j=0..`if`(t and i::odd, 0, n/i))))
end:
a:= n-> b(n$2, false):
seq(a(n), n=1..60); # Alois P. Heinz, Jun 30 2016
MATHEMATICA
first Needs["DiscreteMath`Combinatorica`"], then f[n_] := Count[ Plus @@@ Mod[ Union /@ Partitions[n], 2], 1]; Table[ f[n], {n, 1, 51}] (* Robert G. Wilson v, Feb 16 2004 *)
CROSSREFS
Cf. A066897.
Sequence in context: A278504 A085179 A113782 * A125675 A301501 A072787
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 12 2004
EXTENSIONS
More terms from Robert G. Wilson v, Feb 16 2004
STATUS
approved