Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 28 2018 05:29:00
%S 1,1,3,2,6,5,11,8,20,15,32,24,51,39,80,58,119,90,175,130,255,190,361,
%T 268,508,379,706,522,967,722,1313,974,1771,1317,2363,1754,3131,2330,
%U 4123,3058,5388,4010,7001,5200,9053,6731,11631,8642,14878,11068,18944,14076
%N Number of partitions of n such that the set of odd parts has only one element.
%H Vaclav Kotesovec, <a href="/A090868/b090868.txt">Table of n, a(n) for n = 1..14572</a> (terms 1..5000 from Alois P. Heinz)
%F G.f.: Sum_{m>0} x^(2*m-1)/(1-x^(2*m-1))/Product_{m>0} (1-x^(2*m)).
%p b:= proc(n, i, t) option remember; `if`(n=0, `if`(t, 1, 0),
%p `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0 and i::odd),
%p j=0..`if`(t and i::odd, 0, n/i))))
%p end:
%p a:= n-> b(n$2, false):
%p seq(a(n), n=1..60); # _Alois P. Heinz_, Jun 30 2016
%t first Needs["DiscreteMath`Combinatorica`"], then f[n_] := Count[ Plus @@@ Mod[ Union /@ Partitions[n], 2], 1]; Table[ f[n], {n, 1, 51}] (* _Robert G. Wilson v_, Feb 16 2004 *)
%Y Cf. A066897.
%K easy,nonn
%O 1,3
%A _Vladeta Jovovic_, Feb 12 2004
%E More terms from _Robert G. Wilson v_, Feb 16 2004