login
A301501
Number of compositions (ordered partitions) of n into prime power parts (A246655) such that no two adjacent parts are equal (Carlitz compositions).
1
1, 0, 1, 1, 1, 3, 2, 6, 5, 12, 14, 22, 35, 44, 79, 99, 165, 228, 346, 516, 742, 1140, 1624, 2479, 3592, 5370, 7933, 11684, 17421, 25557, 38098, 56053, 83207, 122958, 181848, 269426, 397900, 589749, 871302, 1290349, 1908208, 2823440, 4178248, 6179602, 9146534, 13527806, 20019958
OFFSET
0,6
FORMULA
G.f.: 1/(1 - Sum_{p prime, k>=1} x^(p^k)/(1 + x^(p^k))).
EXAMPLE
a(8) = 5 because we have [8], [5, 3], [3, 5], [3, 2, 3] and [2, 4, 2].
MATHEMATICA
nmax = 46; CoefficientList[Series[1/(1 - Sum[Boole[PrimePowerQ[k]] x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 22 2018
STATUS
approved