login
A301502
Number of compositions (ordered partitions) of n into triangular parts (A000217) such that no two adjacent parts are equal (Carlitz compositions).
1
1, 1, 0, 1, 2, 1, 1, 3, 3, 3, 7, 9, 6, 10, 20, 20, 20, 36, 50, 54, 75, 109, 126, 156, 233, 302, 352, 480, 676, 838, 1053, 1447, 1896, 2374, 3152, 4225, 5368, 6923, 9297, 12133, 15472, 20353, 26959, 34779, 45092, 59551, 77717, 100475, 131714, 172949, 224316, 291987, 383418
OFFSET
0,5
FORMULA
G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)/2)/(1 + x^(k*(k+1)/2))).
EXAMPLE
a(12) = 6 because we have [3, 6, 3], [3, 1, 3, 1, 3, 1], [1, 10, 1], [1, 6, 1, 3, 1], [1, 3, 1, 6, 1] and [1, 3, 1, 3, 1, 3].
MATHEMATICA
nmax = 52; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2)/(1 + x^(k (k + 1)/2)), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 22 2018
STATUS
approved