login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260056
Irregular triangle read by rows: coefficients T(n, k) of certain polynomials p(n, x) with exponents in increasing order, n >= 0 and 0 <= k <= 2*n.
2
1, 2, 1, 1, 3, 3, 4, 2, 1, 4, 6, 10, 9, 7, 3, 1, 5, 10, 20, 25, 26, 19, 11, 4, 1, 6, 15, 35, 55, 71, 70, 56, 34, 16, 5, 1, 7, 21, 56, 105, 161, 196, 197, 160, 106, 55, 22, 6, 1, 8, 28, 84, 182, 322, 462, 554, 553, 463, 321, 183, 83, 29, 7, 1, 9, 36, 120, 294, 588, 966, 1338, 1569, 1570, 1337, 967, 587, 295, 119, 37, 8, 1, 10, 45, 165, 450, 1002, 1848, 2892, 3873, 4477, 4476, 3874
OFFSET
0,2
COMMENTS
The triangle is related to the triangle of trinomial coefficients.
FORMULA
T(n,0) = n+1, and T(n,k) = 0 for k < 0 or k > 2*n, and T(n+1,k) = T(n,k) + T(n,k-1) + T(n,k-2) for k > 0.
T(n,k) = Sum_{j=0..n} A027907(j,k) for 0 <= k <= 2*n.
T(n,k) = Sum_{j=0..k} (-1)^(k-j)*A027907(n+1,j+1) for 0 <= k <= 2*n.
T(n,k) = T(n,2*n-1-k) + (-1)^k for 0 <= k < 2*n.
p(n,x) = Sum_{k=0..2*n} T(n,k)*x^k = Sum_{k=0..n} (1+x+x^2)^k for n >= 0.
p(n,x) = ((1+x+x^2)^(n+1)-1)/(x+x^2), p(n,0) = p(n,-1) = n+1 for n >= 0.
p(n+1,x) = (1+x+x^2)*p(n,x)+1 for n >= 0.
Sum_{n>=0} p(n,x)*t^n = 1/((1-t)*(1-t*(1+x+x^2))).
T(n,2*n) = 1, and T(n,n) = A113682(n) for n >= 0.
T(n,n-1) = A246437(n+1), and T(n,n-1)+T(n,n) = A002426(n+1) for n > 0.
If d(n) is n-th antidiagonal sum of the triangle then: d(n) = A008937(n+1), and d(n+2)-d(n) = A001590(n+5) for n >= 0.
Conjecture: If a(n) is n-th antidiagonal alternating sum of the triangle then: a(n) = A004524(n+3).
Sum_{k=0..2*n} (-1)^k*T(n,k)^2 = (3^(n+1)-1)/2 for n >= 0.
Sum_{k=0..2*n} (-1)^k*(y*k+1)*T(n,k) = Sum{k=0..n} y*k+1 = (n+1)*(y*n+2)/2 for real y and n >= 0.
Conjecture of linear recurrence for column k: Sum_{m=0..k+2} (-1)^m*T(n+m,k)* binomial(k+2,m) = 0 for k >= 0 and n >= 0.
EXAMPLE
The irregular triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
0 1;
1 2 1 1;
2 3 3 4 2 1;
3 4 6 10 9 7 3 1;
4 5 10 20 25 26 19 11 4 1;
5 6 15 35 55 71 70 56 34 16 5 1;
6 7 21 56 105 161 196 197 160 106 55 22 6 1;
7 8 28 84 182 322 462 554 553 463 321 183 83 29 7 1;
etc.
The polynomial corresponding to row 2 is p(2,x) = 3+3*x+4*x^2+2*x^3+x^4.
MATHEMATICA
A027907[n_, k_] := Sum[Binomial[n, j]*Binomial[j, k - j], {j, 0, n}]; Table[ Sum[A027907[j, k], {j, 0, n}], {n, 0, 10}, {k, 0, 2*n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
CROSSREFS
Cf. A000027 (col 0), A000217 (col 1), A000292 (col 2), A001590, A002426, A004524, A005582 (col 3), A008937, A027907, A095662 (col 5), A113682, A246437.
Sequence in context: A101417 A318660 A301502 * A269699 A035636 A104554
KEYWORD
nonn,easy,tabf
AUTHOR
Werner Schulte, Nov 08 2015
STATUS
approved