This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113682 Expansion of 2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2))). 8
 1, 1, 4, 9, 26, 70, 197, 553, 1570, 4476, 12827, 36894, 106471, 308113, 893804, 2598313, 7567466, 22076404, 64498427, 188689684, 552675365, 1620567763, 4756614062, 13974168190, 41088418151, 120906613075, 356035078102 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Convolution of A002426 and A005043. Diagonal sums of A094531. Hankel transform is A164611. - Paul Barry, Aug 17 2009 David Scambler observed that [1,0,a(n-2)] for n>=2 count the Dyck paths of semilength n such that the number of peaks equals the number of hills plus the number of returns. - Peter Luschny, Oct 22 2012 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385. FORMULA a(n) = Sum_{k=0..floor(n/2)} ( Sum_{i=0..n-k} C(n-2k-i, i)*C(n-k, k+i) ). a(n) = Sum_{k=0..n} A002426(k)*A005043(n-k). a(n) = Sum_{k=0..n} A005043(k)*A002426(n-k). a(n) = Sum_{k=0..n} C(n+1,k+1)*C(k,n-k). - Paul Barry, Aug 21 2007 a(n) = (A002426(n+1) + (-1)^n)/2. - Paul Barry, Aug 17 2009 G.f.: d/dx log(1/(1-x*A005043(x))). - Vladimir Kruchinin, Apr 18 2011 Conjecture: (n+1)*a(n) +(-n-1)*a(n-1) +(-5*n+1)*a(n-2) +3*(-n+1)*a(n-3)=0. - R. J. Mathar, Nov 26 2012 Recurrence: (n+4)*a(n+3)-(n+4)*a(n+2)-(5*n+14)*a(n+1)-3*(n+2)*a(n)=0. Remark: this recurrence can be obtained using the identity a(n) = (t(n+1)+(-1)^n)/2 and the recurrence of the central trinomial coefficients t(n) = A002426(n). So, the above conjecture is true. - Emanuele Munarini, Dec 20 2016 a(n) = (-1)^(n+1) * (hypergeom([1/2, -n-1], [1], 4) - 1)/2. - Vladimir Reshetnikov, Apr 25 2016 a(n) = (-1)^n + A246437(n+1). - Vladimir Reshetnikov, Apr 25 2016 MATHEMATICA ex[x_]:=Module[{sx=Sqrt[1-2x-3x^2]}, 2/(sx (1+x+sx))]; CoefficientList[ Series[ ex[x], {x, 0, 40}], x] (* Harvey P. Dale, May 28 2012 *) Flatten[{1, Table[Coefficient[Sum[(1 + x + x^2)^k, {k, 0, n}], x^n], {n, 1, 30}]}] (* Vaclav Kotesovec, Jan 08 2016 *) PROG (Maxima) makelist((ultraspherical(n+1, -n-1, -1/2)+(-1)^n)/2, n, 0, 12); /* Emanuele Munarini, Dec 20 2016 */ (PARI) x='x+O('x^50); Vec(2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2)))) \\ G. C. Greubel, Feb 28 2017 CROSSREFS Cf. A217539, A217540. Sequence in context: A020181 A216134 A226908 * A291064 A145855 A240042 Adjacent sequences:  A113679 A113680 A113681 * A113683 A113684 A113685 KEYWORD easy,nonn AUTHOR Paul Barry, Nov 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 18:51 EDT 2019. Contains 326133 sequences. (Running on oeis4.)