login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113682
Expansion of 2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2))).
8
1, 1, 4, 9, 26, 70, 197, 553, 1570, 4476, 12827, 36894, 106471, 308113, 893804, 2598313, 7567466, 22076404, 64498427, 188689684, 552675365, 1620567763, 4756614062, 13974168190, 41088418151, 120906613075, 356035078102
OFFSET
0,3
COMMENTS
Convolution of A002426 and A005043. Diagonal sums of A094531.
Hankel transform is A164611. - Paul Barry, Aug 17 2009
David Scambler observed that [1,0,a(n-2)] for n>=2 count the Dyck paths of semilength n such that the number of peaks equals the number of hills plus the number of returns. - Peter Luschny, Oct 22 2012
Conjectural congruences (working with an offset of 1): a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for prime p >= 5 and positive integers n and k. - Peter Bala, Mar 15 2020
LINKS
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} ( Sum_{i=0..n-k} C(n-2k-i, i)*C(n-k, k+i) ).
a(n) = Sum_{k=0..n} A002426(k)*A005043(n-k).
a(n) = Sum_{k=0..n} C(n+1,k+1)*C(k,n-k). - Paul Barry, Aug 21 2007
a(n) = (A002426(n+1) + (-1)^n)/2. - Paul Barry, Aug 17 2009
G.f.: d/dx log(1/(1-x*A005043(x))). - Vladimir Kruchinin, Apr 18 2011
D-finite with recurrence: (n+1)*a(n) +(-n-1)*a(n-1) +(-5*n+1)*a(n-2) +3*(-n+1)*a(n-3)=0. - R. J. Mathar, Nov 26 2012
Recurrence: (n+4)*a(n+3)-(n+4)*a(n+2)-(5*n+14)*a(n+1)-3*(n+2)*a(n)=0. Remark: this recurrence can be obtained using the identity a(n) = (t(n+1)+(-1)^n)/2 and the recurrence of the central trinomial coefficients t(n) = A002426(n). So, the above P-finite recurrences are true. - Emanuele Munarini, Dec 20 2016
a(n) = (-1)^(n+1) * (hypergeom([1/2, -n-1], [1], 4) - 1)/2. - Vladimir Reshetnikov, Apr 25 2016
a(n) = (-1)^n + A246437(n+1). - Vladimir Reshetnikov, Apr 25 2016
MATHEMATICA
ex[x_]:=Module[{sx=Sqrt[1-2x-3x^2]}, 2/(sx (1+x+sx))]; CoefficientList[ Series[ ex[x], {x, 0, 40}], x] (* Harvey P. Dale, May 28 2012 *)
Flatten[{1, Table[Coefficient[Sum[(1 + x + x^2)^k, {k, 0, n}], x^n], {n, 1, 30}]}] (* Vaclav Kotesovec, Jan 08 2016 *)
PROG
(Maxima) makelist((ultraspherical(n+1, -n-1, -1/2)+(-1)^n)/2, n, 0, 12); /* Emanuele Munarini, Dec 20 2016 */
(PARI) x='x+O('x^50); Vec(2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2)))) \\ G. C. Greubel, Feb 28 2017
(Magma) [(Evaluate(GegenbauerPolynomial(n+1, -n-1), -1/2) + (-1)^n)/2: n in [0..40]]; // G. C. Greubel, Apr 04 2024
(SageMath) [(gegenbauer(n+1, -n-1, -1/2) +(-1)^n)/2 for n in range(41)] # G. C. Greubel, Apr 04 2024
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 04 2005
STATUS
approved