OFFSET
0,10
COMMENTS
(Sum over row n) = A000041(n) = number of partitions of n.
Reversal of this array is array in A113686.
From Gary W. Adamson, Apr 11 2010: (Start)
FORMULA
G.f.: G(t,x) = 1/Product_{j>=1} (1 - t^(2j-1)*x^(2j-1))*(1-x^(2j)). - Emeric Deutsch, Feb 17 2006
EXAMPLE
First 5 rows:
1;
0, 1;
1, 0, 1;
0, 1, 0, 2;
2, 0, 1, 0, 2;
0, 2, 0, 2, 0, 3.
The partitions of 5 are 5, 1+4, 2+3, 1+1+3, 1+2+2, 1+1+1+2, 1+1+1+1+1.
The sums of odd parts are 5,1,3,5,1,3,5, respectively, so that the numbers of 0's, 1's, 2s, 3s, 4s, 5s are 0,2,0,2,0,3, which is row 5 of the array.
MAPLE
g := 1/product((1-t^(2*j-1)*x^(2*j-1))*(1-x^(2*j)), j=1..20):
gser := simplify(series(g, x=0, 22)):
P[0] := 1: for n from 1 to 14 do P[n] := coeff(gser, x^n) od:
for n from 0 to 14 do seq(coeff(P[n], t, j), j=0..n) od;
# yields sequence in triangular form - Emeric Deutsch, Feb 17 2006
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Nov 05 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 17 2006
STATUS
approved