login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113688 Isolated semiprimes in the semiprime spiral. 9
65, 74, 249, 295, 309, 355, 422, 511, 545, 667, 669, 758, 926, 943, 979, 998, 1099, 1167, 1186, 1322, 1457, 1469, 1561, 1585, 1658, 1711, 1774, 1779, 1835, 1891, 1959, 1961, 1963, 2021, 2038, 2066, 2155, 2186, 2191, 2206, 2271, 2329, 2342 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam's marking the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by marking the semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence lists the isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes. A113689 gives an enumeration of the number of semiprimes in clumps of size >1 through n^2.

REFERENCES

S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..2000

Alois P. Heinz, Plot of semiprime spiral, containing all semiprimes <= 10000. Isolated semiprimes are colored red.

M. Stein and S. M. Ulam, An Observation on the Distribution of Primes, Amer. Math. Monthly 74, 43-44, 1967.

M. Stein and S. M. Ulam and M. B. Wells, A Visual Display of Some Properties of the Distribution of Primes, Amer. Math. Monthly 71, 516-520, 1964.

Eric Weisstein's World of Mathematics, Prime Spiral.

Eric Weisstein's World of Mathematics, Semiprime.

EXAMPLE

Spiral example:

......................

... 17 16 15 14 13 ...

... 18  5  4  3 12 ...

... 19  6  1  2 11 ...

... 20  7  8  9 10 ...

... 21 22 23 24 25 ...

......................

From Michael De Vlieger, Dec 22 2015: (Start)

Spiral including n <= 121 showing only semiprimes, the isolated semiprimes appear in parentheses:

  .   .   .   .   .   .  95  94  93   .  91

  . (65)  .   .  62   .   .   .  58  57   .

  .   .   .   .  35  34  33   .   .   .   .

  .   .  38   .   .  15  14   .   .  55   .

  .   .  39   .   .   4   .   .   .   .  87

106  69   .   .   6   .   .   .   .   .  86

  .   .   .   .   .   .   9  10   .   .  85

  .   .   .  21  22   .   .  25  26  51   .

  .   .   .   .   .  46   .   .  49   .   .

  .   . (74)  .   .  77   .   .   .   .  82

111   .   .   . 115   .   . 118 119   . 121

(End)

MATHEMATICA

spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; t = spiral@ 26 /. n_ /; PrimeOmega@ n != 2 -> 0; f@ t (* Michael De Vlieger, Dec 21 2015, Version 10 *)

CROSSREFS

Cf. A001107, A001358, A002939, A002943, A004526, A005620, A007742, A033951-A033954, A033988, A033989-A033991, A033996, A063826.

Sequence in context: A095523 A282113 A060877 * A214484 A159758 A056693

Adjacent sequences:  A113685 A113686 A113687 * A113689 A113690 A113691

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Nov 05 2005

EXTENSIONS

Corrected and extended by Alois P. Heinz, Jan 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 06:05 EST 2017. Contains 295937 sequences.