login
A063826
Let 1, 2, 3, 4 represent moves to the right, down, left and up; this sequence describes the movements in the clockwise square spiral (a.k.a. Ulam Spiral).
48
1, 2, 3, 3, 4, 4, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4
OFFSET
0,2
COMMENTS
Sequence starts with 1, 2, 3, then can be broken into groups of 8n+4 members, so if n is incremented, starting at 1, the groups follow the following pattern: 3 occurs at the beginning of the group, 4 then occurs 2n times, 1 occurs 2n+1 times, 2 occurs 2n+1 times, 3 occurs 2n+1 times; so each group has 8n+4 terms.
Simpler description: Groups of 2*(2n-1) + 2*(2n) = 8n - 2 terms, n = 1, 2, 3, ..., consisting of 2n-1 times 1, then 2n-1 times 2; then 2n times 3, then 2n times 4. The n-th group starts at index (4n - 6)n + 2 and ends at index (4n + 2)n - 1. - M. F. Hasler, Aug 08 2020
LINKS
Dario Alpern, Ulam's Spiral
Adrian J. F. Leatherland, The mysterious Ulam spiral phenomenon
FORMULA
1 <= a(n) <= 4 with a(n) == floor(sqrt(4n + 1)) (mod 4). - M. F. Hasler, Aug 08 2020
EXAMPLE
Breaking into the groups, we have: 1, 2, 3 n=1: 3, 4, 4, 1, 1, 1, 2, 2, 2, 3, 3, 3, n=2: 3, 4, 4, 4, 4, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3 n=3: 3, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3 and so on.
The spiral of numbers which shows in which order the steps in direction right, down, left and up are made, is depicted for example in sequence A174344. - M. F. Hasler, Aug 08 2020
MATHEMATICA
a[n_] := Mod[Floor[Sqrt[4*n + 1]] + 3, 4] + 1; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 30 2016 adapted from PARI *)
Join[{1, 2, 3}, Flatten[Table[{{3}, PadRight[{}, 2n, 4], Table[PadRight[{}, 2n+1, k], {k, 3}]}, {n, 5}]]] (* Harvey P. Dale, Jun 29 2019 *)
PROG
(PARI) A063826(n)=(sqrtint(4*n+1)+3)%4+1 \\ To see the terms: apply(A063826, [0..99])
CROSSREFS
Sequence in context: A096827 A298321 A226142 * A320120 A152983 A366121
KEYWORD
easy,nice,nonn
AUTHOR
Wai Ha Lee (Wainson(AT)hotmail.com), Aug 20 2001
STATUS
approved