login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096827
Number of antichains in divisor lattice D(n).
23
2, 3, 3, 4, 3, 6, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 10, 3, 10, 6, 6, 3, 15, 4, 6, 5, 10, 3, 20, 3, 7, 6, 6, 6, 20, 3, 6, 6, 15, 3, 20, 3, 10, 10, 6, 3, 21, 4, 10, 6, 10, 3, 15, 6, 15, 6, 6, 3, 50, 3, 6, 10, 8, 6, 20, 3, 10, 6, 20, 3, 35, 3, 6, 10, 10, 6, 20, 3, 21, 6, 6, 3, 50, 6, 6, 6, 15, 3, 50, 6
OFFSET
1,1
COMMENTS
The divisor lattice D(n) is the lattice of the divisors of the natural number n.
The empty set is counted as an antichain in D(n).
a(n) = gamma(n+1) where gamma is degree of cardinal completeness of Łukasiewicz n-valued logic. - Artur Jasinski, Mar 01 2010
REFERENCES
Alexander S. Karpenko, Lukasiewicz's Logics and Prime Numbers, Luniver Press, Beckington, 2006. See Table I p. 113.
FORMULA
a(n) = A285573(n) + 1. - Gus Wiseman, Aug 24 2018
MATHEMATICA
nn=200;
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[stableSets[Divisors[n], Divisible]], {n, nn}] (* Gus Wiseman, Aug 24 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 17 2004
EXTENSIONS
More terms from John W. Layman, Aug 20 2004
STATUS
approved