login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226142
The smallest positive integer k such that the symmetric group S_n is a product of k cyclic groups.
1
1, 1, 2, 3, 3, 4, 4
OFFSET
1,3
COMMENTS
Since S_{n+1} is a product of a subgroup isomorphic to S_n and the cyclic group <(1,2,3,...,n+1)> we have a(n+1) <= a(n) + 1. On the other hand it is not clear that a(n) <= a(n+1) for all n. A lower bound is given by A226143(n) = ceiling(log(m)(n!)), m = A000793(n), a sequence that is not nondecreasing.
This sequence was suggested by a posting of L. Edson Jeffery on the seqfans mailing list on May 24, 2013.
Cardinality of the smallest subset(s) X of S_n such that every permutation in S_n can be expressed as a product of some elements in X. - Joerg Arndt, Dec 13 2015
LINKS
Miklós Abért, Symmetric groups as products of Abelian subgroups, Bull. Lond. Math. Soc., Volume 34, Issue 04, July 2002, pp. 451-456.
EXAMPLE
a(7) = 4 since a factorization of S_7 is given by C_1*C_2*C_3*C_4 where
C_1 = <(1,2,3,4)(5,6,7)>,
C_2 = <(1,4,6)(2,3,5,7)>,
C_3 = <(1,2,5,7)(3,4,6)>,
C_4 = <(1,3,5,6,7)(2,4)>,
and a brute force computation shows that S_7 is not a product of 3 or fewer cyclic subgroups.
CROSSREFS
Sequence in context: A262535 A096827 A298321 * A063826 A320120 A152983
KEYWORD
nonn,hard,more,nice
AUTHOR
W. Edwin Clark, May 27 2013
STATUS
approved