login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226141 Sum of the squared parts of the partitions of n into exactly two parts. 2
0, 2, 5, 18, 30, 64, 91, 156, 204, 310, 385, 542, 650, 868, 1015, 1304, 1496, 1866, 2109, 2570, 2870, 3432, 3795, 4468, 4900, 5694, 6201, 7126, 7714, 8780, 9455, 10672, 11440, 12818, 13685, 15234, 16206, 17936, 19019, 20940, 22140, 24262, 25585, 27918, 29370, 31924, 33511 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{i=1..floor(n/2)} (i^2 + (n-i)^2).
a(n) = ((n/2)^2) * (1 - ceiling(n/2) + floor(n/2)) + Sum_{i=1..n-1} i^2.
a(n) = n*(8*n^2 - 9*n + 4)/24 + (-1)^n*n^2/8. - Giovanni Resta, May 29 2013
G.f.: x^2*(2+3*x+7*x^2+3*x^3+x^4) / ( (1+x)^3*(x-1)^4 ). - R. J. Mathar, Jun 07 2013
EXAMPLE
a(5) = 30; 5 has exactly 2 partitions into two parts, (4,1) and (3,2). Squaring the parts and adding, we get: 1^2 + 2^2 + 3^2 + 4^2 = 30.
MAPLE
a:=n->sum(i^2 + (n-i)^2, i=1..floor(n/2)); seq((a(k), k=1..40);
MATHEMATICA
Array[Sum[i^2 + (# - i)^2, {i, Floor[#/2]}] &, 39] (* Michael De Vlieger, Jan 23 2018 *)
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 2, 5, 18, 30, 64, 91}, 50] (* Harvey P. Dale, Jul 23 2019 *)
CROSSREFS
Sequence in context: A080689 A026321 A288994 * A355515 A048221 A183365
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 27 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 01:07 EST 2023. Contains 367681 sequences. (Running on oeis4.)