login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288994 a(n) = n*(n+3) when n is congruent to 0 or 3 (mod 4), and n*(n+3)/2 otherwise. 1
0, 2, 5, 18, 28, 20, 27, 70, 88, 54, 65, 154, 180, 104, 119, 270, 304, 170, 189, 418, 460, 252, 275, 598, 648, 350, 377, 810, 868, 464, 495, 1054, 1120, 594, 629, 1330, 1404, 740, 779, 1638, 1720, 902, 945, 1978, 2068, 1080, 1127, 2350, 2448, 1274, 1325 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-6,10,-12,12,-10,6,-3,1).

FORMULA

a(n) = n*(n+3)/2 * (2 - floor((n+1)/2) mod 2), where n*(n+3)/2 is A000096(n).

a(n) = A060819(n+3)*A145979(n-2).

a(n) = (2*n*(n+3))/(GCD(4, n+2)*GCD(4, n+3)).

a(n) = A227316(n+1) - (period 4 repeat 2,1,1,2).

From Colin Barker, Jun 21 2017: (Start)

G.f.: x*(2 - x + 15*x^2 - 16*x^3 + 18*x^4 - 9*x^5 + 5*x^6 - 2*x^7) / ((1 - x)^3*(1 + x^2)^3).

a(n) = (1/8 + i/8)*(((3 - 3*i) - i*(-i)^n + i^n)*n*(3 + n)), where i=sqrt(-1). (End)

MATHEMATICA

a[n_] := n (n+3) Switch[Mod[n, 4], 0|3, 1, _, 1/2]; Table[a[n], {n, 0, 50}]

Table[If[MemberQ[{0, 3}, Mod[n, 4]], n(n+3), (n(n+3))/2], {n, 0, 50}] (* or *) LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {0, 2, 5, 18, 28, 20, 27, 70, 88}, 60] (* Harvey P. Dale, Jun 05 2021 *)

PROG

(PARI) concat(0, Vec(x*(2 - x + 15*x^2 - 16*x^3 + 18*x^4 - 9*x^5 + 5*x^6 - 2*x^7) / ((1 - x)^3*(1 + x^2)^3) + O(x^60))) \\ Colin Barker, Jun 21 2017

(PARI) i=I; a(n) = (1/8 + i/8)*(((3 - 3*i) - i*(-i)^n + i^n)*n*(3 + n)) \\ Colin Barker, Jun 21 2017

CROSSREFS

Cf. A000096, A014695, A028552, A060819, A130658, A145979, A227316.

Sequence in context: A269665 A080689 A026321 * A226141 A048221 A183365

Adjacent sequences:  A288991 A288992 A288993 * A288995 A288996 A288997

KEYWORD

nonn,easy

AUTHOR

Jean-François Alcover and Paul Curtz, Jun 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 23:12 EDT 2021. Contains 346365 sequences. (Running on oeis4.)