

A226143


a(n) is the smallest k > 0 such that A000793(n)^k >= n!.


2



1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 12, 13, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 15, 16, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

This is a lower bound for A226142(n), the least positive integer k such that S_n is a product of k cyclic groups. Clearly also a(n) = ceiling(log_m(n!) where m = A000793(n).


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000


MAPLE

A000793:=
[1, 2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 60, 84, 105, 140,
210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 1540,
2310, 2520, 4620, 4620, 5460, 5460, 9240, 9240, 13860,
13860, 16380, 16380, 27720, 30030, 32760, 60060, 60060,
60060, 60060, 120120]:
a:=proc(n)
global A000793;
local k;
for k from 1 do
if A000793[n]^k >= n! then return k; fi;
od;
end;


CROSSREFS

Cf. A000793, A226142.
Sequence in context: A189641 A189672 A058889 * A166724 A110862 A104257
Adjacent sequences: A226140 A226141 A226142 * A226144 A226145 A226146


KEYWORD

nonn


AUTHOR

W. Edwin Clark, May 27 2013


STATUS

approved



