login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096826
Number of maximal-sized antichains in divisor lattice D(n).
3
1, 2, 2, 3, 2, 1, 2, 4, 3, 1, 2, 3, 2, 1, 1, 5, 2, 3, 2, 3, 1, 1, 2, 6, 3, 1, 4, 3, 2, 2, 2, 6, 1, 1, 1, 1, 2, 1, 1, 6, 2, 2, 2, 3, 3, 1, 2, 10, 3, 3, 1, 3, 2, 6, 1, 6, 1, 1, 2, 1, 2, 1, 3, 7, 1, 2, 2, 3, 1, 2, 2, 4, 2, 1, 3, 3, 1, 2, 2, 10, 5, 1, 2, 1, 1, 1
OFFSET
1,2
COMMENTS
The divisor lattice D(n) is the lattice of the divisors of the natural number n.
LINKS
EXAMPLE
From Gus Wiseman, Aug 24 2018: (Start)
The a(120) = 6 antichains:
{8,12,20,30}
{8,12,15,20}
{8,10,12,15}
{6,8,15,20}
{6,8,10,15}
{4,6,10,15}
(End)
PROG
(Sage)
def A096826(n) :
if n==1 : return 1
R.<t> = QQ[]; mults = [x[1] for x in factor(n)]
maxsize = prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2]
dlat = LatticePoset((divisors(n), attrcall("divides")))
count = 0
for ac in dlat.antichains_iterator() :
if len(ac) == maxsize : count += 1
return count
# Eric M. Schmidt, May 13 2013
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 17 2004
EXTENSIONS
More terms from Eric M. Schmidt, May 13 2013
STATUS
approved