login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116199
a(n) = the number of positive divisors of n which are coprime to sigma(n) = A000203(n).
2
1, 2, 2, 3, 2, 1, 2, 4, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 4, 2, 2, 1, 3, 2, 4, 1, 2, 2, 2, 6, 2, 2, 4, 9, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 6, 2, 2, 2, 1, 4, 2, 4, 2, 2, 2, 2, 2, 6, 7, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 6, 2, 4, 2, 2, 2, 5, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 1, 2, 6, 2, 9, 2, 2, 2, 2, 4
OFFSET
1,2
COMMENTS
In the first 1000 terms, only 69 are odd. - Harvey P. Dale, Jul 16 2016
LINKS
EXAMPLE
The sum of the positive divisors of 12 is 1+2+3+4+6+12 = 28. There are 2 positive divisors (1 and 3) of 12 which are coprime to 28. So a(12) = 2.
MAPLE
with(numtheory): a:=proc(n) local div, ct, j: div:=divisors(n): ct:=0: for j from 1 to tau(n) do if igcd(div[j], sigma(n))=1 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(a(n), n=1..140); # Emeric Deutsch, May 05 2007
MATHEMATICA
pdc[n_]:=Module[{s=DivisorSigma[1, n]}, Count[Divisors[n], _?(CoprimeQ[ #, s]&)]]; Array[pdc, 110] (* Harvey P. Dale, Jul 16 2016 *)
PROG
(PARI) a(n)=my(s=sigma(n)); sumdiv(n, d, gcd(s, d)==1) \\ Charles R Greathouse IV, Feb 19 2013
CROSSREFS
Cf. A128830.
Sequence in context: A044050 A096826 A346010 * A369031 A162915 A359791
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 16 2007
EXTENSIONS
More terms from Emeric Deutsch, May 05 2007
STATUS
approved