login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128830
a(n) = the number of positive divisors of n which are coprime to d(n), where d(n) = the number of positive divisors of n.
2
1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 4, 5, 2, 1, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 7, 4, 4, 2, 2, 4, 4, 2, 1, 2, 2, 3, 2, 4, 4, 2, 1, 5, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 1, 2, 3, 2, 9, 2, 4, 2, 2, 8
OFFSET
1,3
LINKS
EXAMPLE
The 6 positive divisors of 20 are 1,2,4,5,10,20. Of these, only 1 and 5 are coprime to d(20) = 6. So a(20) = 2.
MAPLE
with(numtheory): a:=proc(n) local div, ct, i: div:=divisors(n): ct:=0: for i from 1 to tau(n) do if igcd(div[i], tau(n))=1 then ct:=ct+1 else ct:=ct: fi od: ct; end: seq(a(n), n=1..140); # Emeric Deutsch, Apr 14 2007
MATHEMATICA
cpd[n_]:=Module[{ds=DivisorSigma[0, n]}, Count[Divisors[n], _?(CoprimeQ[ #, ds]&)]]; Array[cpd, 110] (* Harvey P. Dale, Apr 21 2012 *)
CROSSREFS
Sequence in context: A286657 A334052 A160570 * A090387 A030329 A300139
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 13 2007
EXTENSIONS
More terms from Emeric Deutsch, Apr 14 2007
STATUS
approved