

A286657


Triangle read by rows. T(n,k) = least m > 0 such that prime(n) + m * prime(k) and m * prime(n) + prime(k) are both prime numbers, 1 <= k < n.


1



1, 1, 2, 3, 2, 2, 1, 4, 6, 6, 3, 2, 2, 4, 6, 1, 2, 4, 2, 4, 2, 5, 4, 2, 4, 8, 4, 14, 3, 10, 4, 2, 4, 6, 12, 6, 1, 10, 6, 6, 4, 14, 6, 8, 6, 5, 4, 2, 4, 2, 4, 24, 18, 14, 8, 3, 10, 2, 6, 6, 10, 6, 4, 2, 6, 10, 1, 4, 6, 20, 6, 14, 4, 2, 6, 4, 2, 6, 9, 8, 6, 4, 6
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9
1:
2: 1
3: 1 2
4: 3 2 2
5: 1 4 6 6
6: 3 2 2 4 6
7: 1 2 4 2 4 2
8: 5 4 2 4 8 4 14
9: 3 10 4 2 4 6 12 6
10: 1 10 6 6 4 14 6 8 6
Assuming Dickson's conjecture, T(n,k) always exists.
T(n,1) is odd.
T(n,k) is even for any k > 1.
A229980(n) = T(n+1, n) for any n > 0.


LINKS

Rémy Sigrist, Rows n=1..100 of triangle, flattened
OEIS Wiki, Dickson's conjecture


EXAMPLE

prime(7) + m*prime(11) is prime for m = 2, 12, 24, 26, 30, ...
m*prime(7) + prime(11) is prime for m = 8, 14, 18, 24, 30, ...
Hence, T(11,7) = 24.


PROG

(PARI) t(n, k) = my (pn=prime(n), pk=prime(k), i=1); while (!isprime(pn+i*pk)  !isprime(i*pn+pk), i++); return (i)


CROSSREFS

Cf. A229980.
Sequence in context: A152197 A049342 A112966 * A334052 A160570 A128830
Adjacent sequences: A286654 A286655 A286656 * A286658 A286659 A286660


KEYWORD

nonn,tabl


AUTHOR

Rémy Sigrist, May 14 2017


STATUS

approved



