login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286658
Primes of the form p*b^b + 1, where p is a prime and b>1.
1
13, 29, 53, 149, 173, 269, 293, 317, 389, 509, 557, 653, 769, 773, 797, 1109, 1229, 1493, 1637, 1733, 1949, 1997, 2309, 2477, 2693, 2837, 2909, 2957, 3329, 3413, 3533, 3677, 3989, 4133, 4157, 4253, 4349, 4373, 4493, 4517, 5189, 5309, 5693, 5717, 5813, 6173
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 3*(2^2)+1 = 13.
a(2) = 7*(2^2)+1 = 29.
a(3) = 13*(2^2)+1 = 53.
MAPLE
N:= 10000: # for all terms <= N
Res:= NULL:
P:= select(isprime, [2, seq(i, i=3..N/4, 2)]):
for b from 2 do
q:= b^b; if q > N/2 then break fi;
for i from 1 to nops(P) do
x:= P[i]*q+1;
if x > N then break fi;
if isprime(x) then Res:= Res, x fi;
od od:
sort(convert({Res}, list)); # Robert Israel, Nov 12 2019
MATHEMATICA
nmax=10^4; pimax=PrimePi[nmax]; bmax=1; While[(bmax+1)^(bmax+1)<=nmax, bmax++]; Select[Union@Flatten@Table[Prime[pi] b^b+1, {b, 2, bmax}, {pi, pimax}], PrimeQ[#]&&#<=nmax&]
PROG
(PARI) list(lim)=my(v=List()); lim\=1; for(b=2, oo, my(p=2*b^b+1); if(p>lim, break); if(isprime(p), listput(v, p))); forstep(b=2, oo, 2, my(B=b^b); if(3*B+1>lim, break); forprime(q=3, (lim-1)\B, my(p=q*B+1); if(isprime(p), listput(v, p)))); Set(v) \\ Charles R Greathouse IV, Jun 16 2022
CROSSREFS
Sequence in context: A010337 A244637 A162579 * A090866 A098062 A094481
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 12 2017
STATUS
approved