login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175768
Primes of the form k * b^b + 1, with b > 1.
4
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 163, 173, 181, 193, 197, 229, 233, 241, 257, 269, 271, 277, 281, 293, 313, 317, 337, 349, 353, 373, 379, 389, 397, 401, 409, 421, 433, 449, 457, 461, 487, 509, 521, 541, 557, 569, 577, 593, 601, 613
OFFSET
1,1
COMMENTS
Without the restriction on b, the sequence would be identical to A000040.
LINKS
EXAMPLE
For a(3), 4 * 2^2 + 1 = 17, which is prime.
From Seiichi Manyama, Mar 27 2018: (Start)
n | a(n)
---+----------------------------------
1 | 5 = 1 * 2^2 + 1.
2 | 13 = 3 * 2^2 + 1.
3 | 17 = 4 * 2^2 + 1.
4 | 29 = 7 * 2^2 + 1.
5 | 37 = 9 * 2^2 + 1.
6 | 41 = 10 * 2^2 + 1.
7 | 53 = 13 * 2^2 + 1.
8 | 61 = 15 * 2^2 + 1.
9 | 73 = 18 * 2^2 + 1.
10 | 89 = 22 * 2^2 + 1.
11 | 97 = 24 * 2^2 + 1.
12 | 101 = 25 * 2^2 + 1.
13 | 109 = 27 * 2^2 + 1 = 4 * 3^3 + 1. (End)
MATHEMATICA
Take[ Select[ Union@ Flatten@ Table[ k*b^b + 1, {b, 2, 20}, {k, 148}], PrimeQ], 55] (* Robert G. Wilson v, Sep 01 2010 *)
PROG
(PARI) isA175768(n)=if(!isprime(n), return(0)); if(n%4==1||n%27==1, return(1)); forprime(b=5, log(n)/log(7), if(n%(b^b)==1, return(1))); 0 \\ Charles R Greathouse IV, Sep 02 2010
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Kevin Batista (kevin762401(AT)yahoo.com), Sep 01 2010
EXTENSIONS
Corrected and edited by Charles R Greathouse IV, Sep 02 2010
STATUS
approved