login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279857
Prime numbers p with the property that p is the sum of the squares of two or more distinct one-digit numbers.
0
5, 13, 17, 29, 37, 41, 53, 59, 61, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 251, 269, 271, 281
OFFSET
1,1
EXAMPLE
5 is in the sequence because 5 = 1^2 + 2^2.
13 is in the sequence because 13 = 2^2 + 3^2.
MATHEMATICA
list = {};
squares = Subsets[{1, 2, 3, 4, 5, 6, 7, 8, 9}]^2;
For[i=1, i≤Length[squares], i++,
If[PrimeQ[Total[squares[[i]] ]], AppendTo[list, Total[squares[[i]] ]]]];
Intersection[list] (* Robert Price, Dec 20 2016 *)
Select[Union[Total/@Subsets[Range[9]^2, {2, 9}]], PrimeQ] (* Harvey P. Dale, Jul 20 2020 *)
PROG
(MiniZinc)
% In the modeling language MiniZinc each prime number n belonging to the sequence produces a satisfactory solution for this model:
include "all_different.mzn";
int: n;
var 1..9: A;
var 1..9: B;
var 1..9: C;
var 1..9: D;
var 1..9: E;
var 1..9: F;
var 1..9: G;
var 1..9: H;
var 1..9: I;
var 0..1: nA; var 0..1: nB; var 0..1: nC; var 0..1: nD; var 0..1: nE; var 0..1: nF; var 0..1: nG; var 0..1: nH; var 0..1: nI;
solve satisfy;
constraint all_different([A, B, C, D, E, F, G, H, I]) /\
n=(A*A*nA+B*B*nB+C*C*nC+D*D*nD+E*E*nE+F*F*nF+G*G*nG+H*H*nH+I*I*nI)
(Python)
from sympy import isprime
from itertools import chain, combinations
def powerset(s): # skipping empty set and singletons
return chain.from_iterable(combinations(s, r) for r in range(2, len(s)+1))
def aupto(limit):
sosds = set(sum(ss) for ss in powerset([i**2 for i in range(1, 10)]))
return sorted(filter(isprime, (t for t in sosds if t <= limit)))
print(aupto(281)) # Michael S. Branicky, May 13 2021
CROSSREFS
Sequence in context: A265889 A359151 A191218 * A077426 A231754 A175768
KEYWORD
nonn,base,fini,full
AUTHOR
Pierandrea Formusa, Dec 20 2016
STATUS
approved