login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231754
Products of distinct primes congruent to 1 modulo 4 (A002144).
4
1, 5, 13, 17, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 137, 145, 149, 157, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 293, 305, 313, 317, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421, 433, 445, 449
OFFSET
1,2
COMMENTS
Contains A002144 as a subsequence, and is a subsequence of A016813 and of A005117.
Also, these numbers satisfy A231589(n) = floor(n*(n-1)/4) (A011848).
LINKS
FORMULA
The number of terms that do not exceed x is ~ c * x / sqrt(log(x)), where c = A088539 * sqrt(A175647) / Pi = 0.3097281805... (Jakimczuk, 2024, Theorem 3.10, p. 26). - Amiram Eldar, Mar 08 2024
EXAMPLE
65 = 5*13 is in the sequence since both 5 and 13 are congruent to 1 modulo 4.
MAPLE
isA231754 := proc(n)
local d;
for d in ifactors(n)[2] do
if op(2, d) > 1 then
return false;
elif modp(op(1, d), 4) <> 1 then
return false;
end if;
end do:
true ;
end proc:
for n from 1 to 500 do
if isA231754(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Mar 16 2016
MATHEMATICA
Select[Range[500], # == 1 || AllTrue[FactorInteger[#], Last[#1] == 1 && Mod[First[#1], 4] == 1 &] &] (* Amiram Eldar, Mar 08 2024 *)
PROG
(PARI) isok(n) = if (! issquarefree(n), return (0)); if (n > 1, f = factor(n); for (i=1, #f~, if (f[i, 1] % 4 != 1, return (0)))); 1
CROSSREFS
Intersection of A005117 and A004613.
Sequence in context: A191218 A279857 A077426 * A175768 A351535 A002144
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Nov 13 2013
STATUS
approved