OFFSET
1,2
COMMENTS
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..4999
Rafael Jakimczuk, Generalizations of Mertens's Formula and k-Free and s-Full Numbers with Prime Divisors in Arithmetic Progression, ResearchGate, 2024.
Shailesh A. Shirali, A family portrait of primes-a case study in discrimination, Math. Mag., Vol. 70, No. 4 (Oct., 1997), pp. 263-272.
FORMULA
The number of terms that do not exceed x is ~ c * x / sqrt(log(x)), where c = A088539 * sqrt(A175647) / Pi = 0.3097281805... (Jakimczuk, 2024, Theorem 3.10, p. 26). - Amiram Eldar, Mar 08 2024
EXAMPLE
65 = 5*13 is in the sequence since both 5 and 13 are congruent to 1 modulo 4.
MAPLE
isA231754 := proc(n)
local d;
for d in ifactors(n)[2] do
if op(2, d) > 1 then
return false;
elif modp(op(1, d), 4) <> 1 then
return false;
end if;
end do:
true ;
end proc:
for n from 1 to 500 do
if isA231754(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Mar 16 2016
MATHEMATICA
Select[Range[500], # == 1 || AllTrue[FactorInteger[#], Last[#1] == 1 && Mod[First[#1], 4] == 1 &] &] (* Amiram Eldar, Mar 08 2024 *)
PROG
(PARI) isok(n) = if (! issquarefree(n), return (0)); if (n > 1, f = factor(n); for (i=1, #f~, if (f[i, 1] % 4 != 1, return (0)))); 1
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Nov 13 2013
STATUS
approved