login
A231755
Primes of the form (2^n-1)/3 - n.
1
331, 1398079, 89478457, 393530540239137101071, 1730765619511609209510165443073253, 8173309551284740577911184144801648979299941984979211421, 2142584059011987034055949456454883470029603991710390447068299
OFFSET
1,1
COMMENTS
a(14) has 671 digits. a(15) has 2820 digits (not included in b-file).
Alternately, primes of the form Jacobsthal(n) - n, where Jacobsthal(n) is the n-th Jacobsthal number.
LINKS
EXAMPLE
a(2)= 1398079: n=22: ((2^n-(-1)^n)/3-n)= 1398079, which is prime.
a(4)= 393530540239137101071: n=70: ((2^n-(-1)^n)/3-n)= 393530540239137101071, which is prime.
MAPLE
KD := proc() local a; a:= (2^n -(-1)^n)/3-n; if isprime(a)then RETURN (a); fi; end: seq(KD(), n=1..1000);
PROG
(PARI) for(n=8, 500, if(ispseudoprime(t=2^n\/3-n), print1(t", "))) \\ Charles R Greathouse IV, Nov 13 2013
CROSSREFS
Cf. A001045 (Jacobsthal numbers).
Cf. A107036 (indices of prime Jacobsthal numbers).
Cf. A128209 (Jacobsthal numbers+1).
Sequence in context: A199820 A255389 A133141 * A097401 A376734 A250758
KEYWORD
nonn,less
AUTHOR
K. D. Bajpai, Nov 13 2013
EXTENSIONS
Definition corrected by Charles R Greathouse IV, Nov 13 2013
STATUS
approved