This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011848 a(n) = floor(binomial(n,2)/2). 25
 0, 0, 0, 1, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 203, 217, 232, 248, 264, 280, 297, 315, 333, 351, 370, 390, 410, 430, 451, 473, 495, 517, 540, 564, 588, 612, 637, 663, 689, 715, 742, 770, 798 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Column sums of an array of the odd numbers repeatedly shifted 4 places to the right: 1 3 5 7  9 11 13 15 17...          1  3  5  7  9...                      1... ......................... ------------------------- 1 3 5 7 10 14 18 22 27... Floor of the area under the polygon connecting the lattice points (n, floor(n/2)) from 0..n. - Wesley Ivan Hurt, Jun 09 2014 Beginning with a(4)=3, the sequence might be called the "off-axis" Ulam-Spiral numbers because they are the numbers in ascending order on the horizontal and vertical spokes (heading outward) starting with the first turning points on the spiral (i.e., 3, 5, 7 and 10). That is, starting with: 3 (upward); 5 (leftward); 7 (downward) and 10 (rightward). These are A033991 (starting at a(1)), A007742 (starting at a(1)), A033954 (starting at a(1)) and A001107 (starting at a(2)), respectively. These quadri-sections are summarized in the formulas of Sep 26 2015. - Bob Selcoe, Oct 05 2015 Conjecture: For n = 2, a(n) is the greatest k such that A123663(k) < A000217(n - 2). - Peter Kagey, Nov 18 2016 a(n) is also the matching number of the n-triangular graph, (n-1)-triangular honeycomb queen graph, (n-1)-triangular honeycomb bishop graphs, and (for n > 7) (n-1)-triangular honeycomb obtuse knight graphs. - Eric W. Weisstein, Jun 02 2017 and Apr 03 2018 After 0, 0, 0, add 1, then add 2 three times, then add 3, then add 4 three times, then add 5, etc.; i.e., first differences are A004524 = (0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, ...). - M. F. Hasler, May 09 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016. Eric Weisstein's World of Mathematics, Matching Number Eric Weisstein's World of Mathematics, Triangular Graph Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1). FORMULA G.f.: x^3(1-x^2)/((1-x)^3(1-x^4)). G.f.: x^3/((1+x^2)*(1-x)^3). - Jon Perry, Mar 31 2004 a(n) = +3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5). - R. J. Mathar, Apr 15 2010 a(n) = floor((n/(1+e^(1/n)))^2). - Richard R. Forberg, Jun 19 2013 a(n) = floor(n*(n-1)/4). - T. D. Noe, Jun 20 2013 a(n) = (1/4) * ( n^2 - n - 1 + (-1)^floor(n/2) ). - Ralf Stephan, Aug 11 2013 a(n) = A054925(n) - A133872(n+2). - Wesley Ivan Hurt, Jun 09 2014 a(4*n) = A033991(n). a(4*n+1) = A007742(n). a(4*n+2) = A033954(n). a(4*n+3) = A001107(n+1). - Bob Selcoe, Sep 26 2015 E.g.f.: (sin(x) + cos(x) + (x^2 - 1)*exp(x))/4. - Ilya Gutkovskiy, Nov 18 2016 A054925(n) = a(-n). A035608(n) = a(2*n+1). Wesley Ivan Hurt, Jun 09 2014 A156859(n) = a(2*n+2). - Michael Somos, Nov 18 2016 Euler transform of length 4 sequence [ 3, -1, 0, 1]. - Michael Somos, Nov 18 2016 EXAMPLE G.f. = x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 14*x^8 + 18*x^9 + 22*x^10 + ... MAPLE seq(floor(binomial(n, 2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009 MATHEMATICA Table[Floor[n (n - 1)/4], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *) CoefficientList[Series[x^3/((1 + x^2) (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 21 2013 *) LinearRecurrence[{3, -4, 4, -4, 1}, {0, 0, 1, 3, 5}, {0, 20}] (* Eric W. Weisstein, Jun 02 2017 *) Table[Floor[Binomial[n, 2]/2], {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *) Table[1/4 (-1 + (-1 + n) n + Cos[n Pi/2] + Sin[n Pi/2]), {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *) Floor[Binomial[Range[0, 20], 2]/2] (* Eric W. Weisstein, Apr 03 2018 *) PROG (PARI) a(n)=binomial(n, 2)\2 (PARI) vector(100, n, n--; floor(n*(n-1)/4)) \\ Altug Alkan, Sep 30 2015 (Sage) [floor(binomial(n, 2)/2) for n in xrange(0, 58)] # Zerinvary Lajos, Dec 01 2009 (MAGMA) [ Floor(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014 (Haskell) a011848 n = if n < 2 then 0 else flip div 2 \$ a007318 n 2 -- Reinhard Zumkeller, Mar 04 2015 (GAP) List([0..60], n->Int(Binomial(n, 2)/2)); # Muniru A Asiru, Apr 05 2018 CROSSREFS A column of triangle A011857. First differences are in A004524. Cf. A007318, A033991, A007742, A033954, A001107. Sequence in context: A194170 A194166 A054040 * A131673 A151945 A140261 Adjacent sequences:  A011845 A011846 A011847 * A011849 A011850 A011851 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 03:20 EDT 2019. Contains 326260 sequences. (Running on oeis4.)