login
A011851
a(n) = floor(binomial(n,5)/5).
3
0, 0, 0, 0, 0, 0, 1, 4, 11, 25, 50, 92, 158, 257, 400, 600, 873, 1237, 1713, 2325, 3100, 4069, 5266, 6729, 8500, 10626, 13156, 16146, 19656, 23751, 28501, 33982, 40275, 47467, 55651, 64926, 75398, 87179, 100388, 115151, 131601, 149879, 170133, 192519, 217201, 244351, 274150
OFFSET
0,8
LINKS
Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 5, 5, -15, 20, -15, 5, 5, -15, 20, -15, 5, 5, -15, 20, -15, 5, 5, -15, 20, -15, 6, -1).
FORMULA
G.f.: x^6*(x^19 -4*x^18 +8*x^17 -8*x^16 +4*x^15 -3*x^13 +6*x^12 -6*x^11 +3*x^10 -2*x^8 +4*x^7 -4*x^6 +2*x^5 -x^3 +2*x^2 -2*x +1) / ((x -1)^6*(x^20 +x^15 +x^10 +x^5 +1)). [Colin Barker, Jan 23 2013]
MAPLE
seq(floor(binomial(n, 5)/5), n=0..37); # Zerinvary Lajos, Jan 12 2009
MATHEMATICA
Floor[Binomial[Range[0, 40], 5]/5] (* Harvey P. Dale, Jan 21 2013 *)
CoefficientList[Series[x^6 (x^19 - 4 x^18 + 8 x^17 - 8 x^16 + 4 x^15 - 3 x^13 + 6 x^12 - 6 x^11 + 3 x^10 - 2 x^8 + 4 x^7 - 4 x^6 + 2 x^5 - x^3 + 2 x^2 - 2 x + 1)/((x - 1)^6 (x^20 + x^15 + x^10 + x^5 + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
CROSSREFS
A column of triangle A011857.
Sequence in context: A006522 A036837 A215052 * A193912 A136395 A014160
KEYWORD
nonn,easy
EXTENSIONS
More terms from Colin Barker, Jan 23 2013
STATUS
approved