login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035608 Expansion of x*(1 + 3*x)/((1 + x)*(1 - x)^3). 46
0, 1, 5, 10, 18, 27, 39, 52, 68, 85, 105, 126, 150, 175, 203, 232, 264, 297, 333, 370, 410, 451, 495, 540, 588, 637, 689, 742, 798, 855, 915, 976, 1040, 1105, 1173, 1242, 1314, 1387, 1463, 1540, 1620, 1701, 1785, 1870, 1958, 2047, 2139, 2232, 2328, 2425 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Maximum value of Voronoi's principal quadratic form of the first type when variables restricted to {-1,0,1}. - Michael Somos, Mar 10 2004

Row sums of triangle A133983. - Gary W. Adamson, Sep 30 2007

This is the main row of a version of the "square spiral" when read alternatively from left to right (see link). See also A001107, A007742, A033954, A033991. It is easy to see that the only prime in the sequence is 5. - Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 08 2009

From Mitch Phillipson, Manda Riehl, Tristan Williams, Mar 06 2009: (Start)

a(n) gives the number of elements of S_2 \wr C_k that avoid the pattern 12, using the following ordering:

In S_j, a permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a<c<b. We extend this notion to S_j \wr C_n as follows. Element \psi =[ \alpha_1^\beta_1, \dots , \alpha_j^\beta_j ] avoids \tau = [ a_1 , \dots , a_m ] (\tau \in S_m) if \psi' = [ \alpha_1*\beta_1, \dots , \alpha_j*\beta_j ] avoids \tau in the usual sense. For n=2, there are 5 elements of S_2 \wr C_2 that avoid the pattern 12. They are: [ 2^1,1^1 ], [ 2^2,1^1 ], [ 2^2,1^2 ], [ 2^1,1^2 ], [ 1^2,2^1 ].

For example, if \psi = [2^1,1^2], then \psi'=[2,2] which avoids tau=[1,2] because no subsequence ab of \psi' has a<b. (End)

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 115.

LINKS

William A. Tedeschi, Table of n, a(n) for n = 0..10000

Emilio Apricena, A version of the Ulam spiral (This is called the square spiral. - N. J. A. Sloane, Jul 27 2018)

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

G.f.: x*(1+3*x)/((1+x)*(1-x)^3).

a(n) = n^2 + n - 1 - floor((n-1)/2).

a(n) = A011848(2*n+1).

a(n) = A002378(n) - A004526(n+1). - Reinhard Zumkeller, Jan 27 2010

a(n) = 2*A006578(n) - A002378(n)/2 = A139592(n)/2. - Reinhard Zumkeller, Feb 07 2010

a(n) = A002265(n+2) + A173562(n). - Reinhard Zumkeller, Feb 21 2010

a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Jan 27 2010

a(n) = (-1)^n*Sum_{i=0..n} (-1)^i*(2*i^2 + 3*i + 1). Omits the leading 0. - William A. Tedeschi, Aug 25 2010

a(n) = n^2 + floor(n/2), from Mathematica section. - Vladimir Joseph Stephan Orlovsky, Apr 12 2011

a(0)=0, a(1)=1, a(2)=5, a(3)=10; for n>3, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Feb 21 2013

For n>1: a(n) = a(n-2) + 4*n - 3; see also row sums of triangle A253146. - Reinhard Zumkeller, Dec 27 2014

a(n) = 3*A002620(n) + A002620(n+1). - R. J. Mathar, Jul 18 2015

MAPLE

A035608:=n->floor((n + 1/4)^2): seq(A035608(n), n=0..100); # Wesley Ivan Hurt, Oct 29 2017

MATHEMATICA

Table[n^2 + Floor[n/2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)

CoefficientList[Series[x (1 + 3 x)/((1 + x) (1 - x)^3), {x, 0, 60}], x] (* or *) LinearRecurrence[{2, 0, -2, 1}, {0, 1, 5, 10}, 60] (* Harvey P. Dale, Feb 21 2013 *)

PROG

(PARI) a(n)=n^2+n-1-(n-1)\2

(MAGMA) [n^2 + n - 1 - Floor((n-1)/2): n in [0..25]]; // G. C. Greubel, Oct 29 2017

CROSSREFS

Partial sums of A042948.

Cf. A133983.

Cf. A253146.

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.

Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.

Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Sequence in context: A313991 A208953 A092390 * A091386 A164004 A025010

Adjacent sequences:  A035605 A035606 A035607 * A035609 A035610 A035611

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 01:08 EDT 2018. Contains 316541 sequences. (Running on oeis4.)