OFFSET
0,3
COMMENTS
Equals (1, 2, 3, 4, ...) convolved with (1, 2, 1, 2, ...). a(4) = 14 = (1, 2, 3, 4) dot (2, 1, 2, 1) = (2 + 2 + 6 + 4). - Gary W. Adamson, May 01 2009
We observe that is the transform of A032766 by the following transform T: T(u_0,u_1,u_2,u_3,...) = (u_0, u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In other words, v_p = Sum_{k=0..p} u_k and the g.f. phi_v of is given by phi_v = phi_u/(1-z). - Richard Choulet, Jan 28 2010
Equals row sums of a triangle with (1, 4, 7, 10, ...) in every column, shifted down twice for columns > 1. - Gary W. Adamson, Mar 03 2010
Number of pairs (x,y) with x in {0,...,n}, y odd in {0,...,2n}, and x < y. - Clark Kimberling, Jul 02 2012
REFERENCES
Marc LeBrun, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Bruno Berselli, Hexagonal spiral containing the initial terms.
Marc Le Brun, Email to N. J. A. Sloane, Jul 1991
Emanuele Munarini, Topological indices for the antiregular graphs, Le Mathematiche (2021) Vol. 76, No. 1, see p. 283.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
Expansion of x*(1+2*x) / ((1-x)^2*(1-x^2)). - Simon Plouffe in his 1992 dissertation
Partial sums of A032766. - Paul Barry, May 30 2003
a(n) = a(n-1) + a(n-2) - a(n-3) + 3 = A002620(n) + A004526(n) = A001859(n) - A004526(n+1). - Henry Bottomley, Mar 08 2000
a(n) = (6*n^2 + 4*n - 1 + (-1)^n)/8. - Paul Barry, May 30 2003
a(n) = A001859(-1-n) for all n in Z. - Michael Somos, May 10 2006
a(n) = (3*n^2 + 2*n - (n mod 2))/4. - Ctibor O. Zizka, Mar 11 2012
a(n) = Sum_{i=1..n} floor(3*i/2) = Sum_{i=0..n} (i + floor(i/2)). - Enrique Pérez Herrero, Apr 21 2012
a(n) = 3*n*(n+1)/2 - A001859(n). - Clark Kimberling, Jul 02 2012
a(n) = Sum_{i=1..n} (n - i + 1) * 2^( (i+1) mod 2 ). - Wesley Ivan Hurt, Mar 30 2014
a(n) = Sum_{k=1..n} floor((n+k+1)/2). - Wesley Ivan Hurt, Mar 31 2017
Sum_{n>=1} 1/a(n) = 3 - Pi/(4*sqrt(3)) - 3*log(3)/4. - Amiram Eldar, May 28 2022
E.g.f.: (x*(5 + 3*x)*cosh(x) - (1 - 5*x - 3*x^2)*sinh(x))/4. - Stefano Spezia, Aug 22 2023
EXAMPLE
G.f. = x + 4*x^2 + 8*x^3 + 14*x^4 + 21*x^5 + 30*x^6 + 40*x^7 + 52*x^8 + 65*x^9 + ...
MAPLE
with (combinat): seq(count(Partition((3*n+1)), size=3), n=0..52); # Zerinvary Lajos, Mar 28 2008
# 2nd program
A006578 := proc(n)
(6*n^2 + 4*n - 1 + (-1)^n)/8 ;
end proc: # R. J. Mathar, Apr 28 2017
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, -1}, {0, 1, 3}, 100]] (* Harvey P. Dale, Sep 29 2013 *)
a[ n_] := Quotient[n + 1, 2] (Quotient[n, 2] 3 + 1); (* Michael Somos, Jun 09 2014 *)
a[ n_] := Quotient[3 (n + 1)^2 + 1, 4] - (n + 1); (* Michael Somos, Jun 10 2015 *)
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 4, 8}, 53] (* Ray Chandler, Aug 03 2015 *)
PROG
(PARI) {a(n) = (3*(n+1)^2 + 1)\4 - n - 1}; /* Michael Somos, Mar 10 2006 */
(Magma) [(6*n^2+4*n-1+(-1)^n)/8: n in [0..50] ]; // Vincenzo Librandi, Aug 20 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset and description changed by N. J. A. Sloane, Nov 30 2006
STATUS
approved