OFFSET
0,4
COMMENTS
Decagonal numbers (A001107) and twice second hexagonal numbers (A002943) interleaved. - Omar E. Pol, Aug 03 2012
Similar to A074377. Members of this family are A093005, A210977, A006578, A210978, this sequence, A210981, A210982. - Omar E. Pol, Aug 09 2012
Number of kites whose vertices are the vertices a regular 2n-gon. - Halil Ibrahim Kanpak, Nov 08 2018
LINKS
H. L. Abbott, D. Hanson, N. Sauer, Intersection theorems for systems of sets, J. Combinatorial Theory Ser. A 12 (1972), 381--389.MR0297579 (45 #6633).
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
G.f.: -x^2*(1 + 5*x + 2*x^2)/((1 + x)^2*(x - 1)^3). - R. J. Mathar, Apr 06 2012
a(n) = n*(4*n - 5 - (-1)^n)/4. - Luce ETIENNE, Oct 04 2014
From Wesley Ivan Hurt, Apr 11 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = Sum_{i=floor((n-1)/2)..floor(3*(n-1)/2)} i. (End)
E.g.f.: x^2*cosh(x) - x*(1 - 2*x)*sinh(x)/2. - Franck Maminirina Ramaharo, Nov 08 2018
MAPLE
f:=n->if n mod 2 = 1 then n*(n-1) else (n-1)^2+(n-2)/2; fi;
[seq(f(n), n=0..130)];
MATHEMATICA
Table[n*(4*n - 5 - (-1)^n)/4, {n, 0, 80}] (* Wesley Ivan Hurt, Apr 11 2016 *)
PROG
(PARI) a(n)=n*(4*n-5-(-1)^n)/4 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [n*(4*n - 5 - (-1)^n)/4 : n in [0..80]]; // Wesley Ivan Hurt, Apr 11 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 05 2012
STATUS
approved