Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Sep 08 2022 08:45:54
%S 0,0,1,6,10,20,27,42,52,72,85,110,126,156,175,210,232,272,297,342,370,
%T 420,451,506,540,600,637,702,742,812,855,930,976,1056,1105,1190,1242,
%U 1332,1387,1482,1540,1640,1701,1806,1870,1980,2047,2162,2232,2352,2425,2550,2626,2756,2835,2970,3052,3192,3277,3422,3510,3660,3751,3906,4000,4160,4257,4422
%N a(n) = if n mod 2 = 1 then n*(n - 1) else (n - 1)^2 + (n - 2)/2.
%C Decagonal numbers (A001107) and twice second hexagonal numbers (A002943) interleaved. - _Omar E. Pol_, Aug 03 2012
%C Similar to A074377. Members of this family are A093005, A210977, A006578, A210978, this sequence, A210981, A210982. - _Omar E. Pol_, Aug 09 2012
%C Number of kites whose vertices are the vertices a regular 2n-gon. - _Halil Ibrahim Kanpak_, Nov 08 2018
%H H. L. Abbott, D. Hanson, N. Sauer, <a href="http://dx.doi.org/10.1016/0097-3165(72)90103-3">Intersection theorems for systems of sets</a>, J. Combinatorial Theory Ser. A 12 (1972), 381--389.MR0297579 (45 #6633).
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F G.f.: -x^2*(1 + 5*x + 2*x^2)/((1 + x)^2*(x - 1)^3). - _R. J. Mathar_, Apr 06 2012
%F a(n) = n*(4*n - 5 - (-1)^n)/4. - _Luce ETIENNE_, Oct 04 2014
%F From _Wesley Ivan Hurt_, Apr 11 2016: (Start)
%F a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
%F a(n) = Sum_{i=floor((n-1)/2)..floor(3*(n-1)/2)} i. (End)
%F E.g.f.: x^2*cosh(x) - x*(1 - 2*x)*sinh(x)/2. - _Franck Maminirina Ramaharo_, Nov 08 2018
%p f:=n->if n mod 2 = 1 then n*(n-1) else (n-1)^2+(n-2)/2; fi;
%p [seq(f(n),n=0..130)];
%t Table[n*(4*n - 5 - (-1)^n)/4, {n, 0, 80}] (* _Wesley Ivan Hurt_, Apr 11 2016 *)
%o (PARI) a(n)=n*(4*n-5-(-1)^n)/4 \\ _Charles R Greathouse IV_, Oct 07 2015
%o (Magma) [n*(4*n - 5 - (-1)^n)/4 : n in [0..80]]; // _Wesley Ivan Hurt_, Apr 11 2016
%Y Cf. A001107, A002943, A006578, A074377, A093005.
%Y Cf. A210977, A210978, A210981, A210982.
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_, Apr 05 2012