The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181993 Denominator of (4^n*(4^n-1)/2)*B_{2n}/(2n)!, B_{n} Bernoulli number. 1
 1, 2, 6, 15, 630, 2835, 155925, 6081075, 1277025750, 10854718875, 1856156927625, 194896477400625, 2900518163668125, 3698160658676859375, 1298054391195577640625, 263505041412702261046875, 245059688513813102773593750, 4043484860477916195764296875 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Numerator is (-1)^(n+1)*A046990(n). LINKS Michel Marcus, Table of n, a(n) for n = 0..100 William Rowan Hamilton, On an expression for the numbers of Bernoulli, by means of a definite integral, and on some connected processes of summation and integration, Philosophical Magazine, 23 (1843), pp. 360-367. FORMULA a(n) = denominator of (1/Pi)*Integral(x>=0, (sin(x)/x)^(2*n)*sin(2*n*x)*tan(x)). MAPLE A181993 := n -> denom((4^n*(4^n-1)/2)*bernoulli(2*n)/(2*n)!); seq(A181993(i), i=0..18); MATHEMATICA a[n_] := Denominator[4^n (4^n-1)/2 BernoulliB[2n]/(2n)!]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 18 2019 *) PROG (PARI) a(n) = denominator((4^n*(4^n-1)/2)*bernfrac(2*n)/(2*n)!); \\ Michel Marcus, Jun 18 2019 CROSSREFS Cf. A046990. Sequence in context: A356803 A261726 A302775 * A123475 A193341 A009711 Adjacent sequences: A181990 A181991 A181992 * A181994 A181995 A181996 KEYWORD nonn,frac AUTHOR Peter Luschny, Apr 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 10:00 EST 2023. Contains 367600 sequences. (Running on oeis4.)