login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123475 Product of the primitive roots of prime(n). 6
1, 2, 6, 15, 672, 924, 11642400, 163800, 109681110000, 5590307923200, 970377408, 134088514560000, 138960660963091968000, 874927557504000, 3456156426256013065185600000000, 30688148115024695887527936000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Except for n=2, we have a(n)=1 (mod prime(n)).
REFERENCES
C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 52.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..145
EXAMPLE
a(5)=672 because the primitive roots of 11 are {2,6,7,8}.
MATHEMATICA
PrimRoots[p_] := Select[Range[p-1], MultiplicativeOrder[ #, p]==p-1&]; Table[Times@@PrimRoots[Prime[n]], {n, 20}]
Times@@@Table[PrimitiveRootList[Prime[n]], {n, 20}] (* Harlan J. Brothers, Sep 02 2023 *)
PROG
(PARI) vecprod(v)=prod(i=1, #v, v[i])
a(n, p=prime(n))=vecprod(select(n->znorder(Mod(n, p))==p-1, [2..p-1]))
apply(p->a(0, p), primes(20)) \\ Charles R Greathouse IV, May 15 2015
(Perl) use ntheory ":all"; sub list { my $n=shift; grep { znorder($_, $n) == $n-1 } 2..$n-1; } say vecprod(list($_)) for @{primes(nth_prime(20))}; # Dana Jacobsen, May 15 2015
CROSSREFS
Cf. A060749 (primitive roots of prime(n)), A088144 (sum of primitive roots of prime(n)).
Sequence in context: A261726 A302775 A181993 * A193341 A009711 A009586
KEYWORD
nonn
AUTHOR
T. D. Noe, Sep 27 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 03:04 EST 2023. Contains 367567 sequences. (Running on oeis4.)