login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123474
Triangle read by rows: T(n,k) = number of labeled bicolored nonseparable graphs with k points in one color class and n-k points in the other class. The classes are interchangeable if k = n-k. Here n >= 2, k=1..n-1.
3
1, 0, 0, 0, 3, 0, 0, 10, 10, 0, 0, 15, 340, 15, 0, 0, 21, 6965, 6965, 21, 0, 0, 28, 51296, 246295, 51296, 28, 0, 0, 36, 326676, 14750946, 14750946, 326676, 36, 0, 0, 45, 1917840, 322476210, 796058676, 322476210, 1917840, 45, 0, 0, 55, 10683255
OFFSET
2,5
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows; first 24 rows from R. W. Robinson)
F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
FORMULA
From Andrew Howroyd, Jan 03 2021: (Start)
T(n,k) = f(n-2*k) * binomial(n,k) * A123301(n, k) where f(0) = 1/2 and 1 otherwise.
A004100(n) = Sum_{k=0..floor(n/2)} T(n,k). (End)
EXAMPLE
Triangle begins:
1;
0, 0;
0, 3, 0;
0, 10, 10, 0;
0, 15, 340, 15, 0;
0, 21, 6965, 6965, 21, 0;
0, 28, 51296, 246295, 51296, 28, 0;
...
Formatted as an array:
==========================================================
m/n | 1 2 3 4 5 6
----+-----------------------------------------------------
1 | 1 0 0 0 0 0 ...
2 | 0 3 10 15 21 28 ...
3 | 0 10 340 6965 51296 326676 ...
4 | 0 15 6965 246295 14750946 322476210 ...
5 | 0 21 51296 14750946 796058676 105725374062 ...
6 | 0 28 326676 322476210 105725374062 9736032295374 ...
...
CROSSREFS
Central coefficients are A005335.
Sequence in context: A244127 A363407 A342312 * A370064 A363033 A321711
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 12 2006
STATUS
approved