login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342312
T(n, k) = ((2*n + 1)/2)*Sum_{j, k, n} (-1)^(k + j)*(n + j)*binomial(2*n, n - j)* Stirling2(n - k + j, 1 - k + j) with T(0, 0) = 1. Triangle read by row, T(n, k) for 0 <= k <= n.
3
1, 0, 3, 0, 0, 10, 0, 0, -42, 21, 0, 0, 216, -288, 36, 0, 0, -1320, 3190, -1210, 55, 0, 0, 9360, -34632, 25584, -4056, 78, 0, 0, -75600, 389340, -462000, 152460, -11970, 105, 0, 0, 685440, -4621824, 7907040, -4368320, 762960, -32640, 136
OFFSET
0,3
COMMENTS
The triangle can be seen as representing the numerators of a sequence of rational polynomials. Let p_{n}(x) = Sum_{k=0..n} (T(n, k)/A342313(n, k))*x^k. Then p_{n}(1) = B_{n}(1), where B_{n}(x) are the Bernoulli polynomials.
FORMULA
T(n, k) = numerator([x^k] p(n, x)) for n >= 2, where p(n, x) = (1/2)*Sum_{k=0..n-1} (-1)^k*x^(n-k)*E2(n - 1, k + 1) / binomial(2*n - 1, k + 1) and E2(n,k) denotes the second-order Eulerian numbers A340556.
Another representation of the polynomials for n >= 2 is p(n, x) = (1/2)*Sum_{k=0..n} x^k*Sum_{j=k..n} ((-1)^(j + k)*((n - k + 1)!*(n + k - 2)!)/((j + n - 1)!*(n- j)!)* Stirling2(n - k + j, j - k + 1).
EXAMPLE
The triangle starts:
[0] 1
[1] 0, 3
[2] 0, 0, 10
[3] 0, 0, -42, 21
[4] 0, 0, 216, -288, 36
[5] 0, 0, -1320, 3190, -1210, 55
[6] 0, 0, 9360, -34632, 25584, -4056, 78
.
The first few polynomials are P(n, k) = T(n, k) / A342313(n, k):
1;
0, 1/2;
0, 0, 1/6;
0, 0, -1/10, 1/10;
0, 0, 3/35, -4/21, 1/14;
0, 0, -2/21, 29/84, -11/36, 1/18;
0, 0, 10/77, -37/55, 164/165, -26/55, 1/22;
MAPLE
T := (n, k) -> `if`(n = 0 and k = 0, 1, (n+1/2)*
add((-1)^j*(n+k+j)*binomial(2*n, n-k-j)*Stirling2(n + j, j + 1) , j= 0..n-k)):
seq(print(seq(T(n, k), k=0..n)), n=0..6);
MATHEMATICA
T[0, 0] := 1; T[n_, k_] := ((2n + 1)/2) Sum[(-1)^(k+j)(n+j) Binomial[2n, n-j] StirlingS2[n-k+j, 1-k+j], {j, k, n}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
CROSSREFS
Cf. A014105 (main diagonal), A342313 (denominators), A340556.
Sequence in context: A346811 A244127 A363407 * A123474 A370064 A363033
KEYWORD
sign,tabl,frac
AUTHOR
Peter Luschny, Mar 08 2021
STATUS
approved