login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342315
T(n, k) = [x^k] 2^n*(Euler(n, x) - Euler(n, x/2)), where Euler(n, x) are the Euler polynomials. Triangle read by rows, T(n, k) for 0 <= k <= n.
0
0, 0, 1, 0, -2, 3, 0, 0, -9, 7, 0, 8, 0, -28, 15, 0, 0, 60, 0, -75, 31, 0, -96, 0, 280, 0, -186, 63, 0, 0, -1008, 0, 1050, 0, -441, 127, 0, 2176, 0, -6272, 0, 3472, 0, -1016, 255, 0, 0, 29376, 0, -30240, 0, 10584, 0, -2295, 511, 0, -79360, 0, 228480, 0, -124992, 0, 30480, 0, -5110, 1023
OFFSET
0,5
EXAMPLE
Table starts:
[0] 0
[1] 0, 1
[2] 0, -2, 3
[3] 0, 0, -9, 7
[4] 0, 8, 0, -28, 15
[5] 0, 0, 60, 0, -75, 31
[6] 0, -96, 0, 280, 0, -186, 63
[7] 0, 0, -1008, 0, 1050, 0, -441, 127
[8] 0, 2176, 0, -6272, 0, 3472, 0, -1016, 255
[9] 0, 0, 29376, 0, -30240, 0, 10584, 0, -2295, 511
MAPLE
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
E := (n, x) -> 2^n*(euler(n, x) - euler(n, x/2));
0, seq(CoeffList(E(n, x)), n = 0..10);
CROSSREFS
Cf. A060096/A060097, A163747 (row sums).
Sequence in context: A354443 A011311 A240658 * A063890 A156439 A087734
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Mar 19 2021
STATUS
approved