

A240658


Least k such that 3^k == 1 (mod prime(n)), or 0 if no such k exists.


1



1, 0, 2, 3, 0, 0, 8, 9, 0, 14, 15, 9, 4, 21, 0, 26, 0, 5, 11, 0, 6, 39, 0, 44, 24, 50, 17, 0, 0, 56, 63, 0, 68, 69, 74, 25, 39, 81, 0, 86, 0, 0, 0, 8, 98, 99, 105, 111, 0, 0, 116, 0, 60, 0, 128, 0, 134, 15, 0, 140, 141, 146, 17, 0, 0, 158, 165, 84, 0, 87, 176, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The least k, if it exists, such that prime(n) divides 3^k + 1.


LINKS



FORMULA

a(1) = 1; for n > 1, a(n) = A062117(n)/2 if A062117(n) is even, otherwise 0.


MATHEMATICA

Table[p = Prime[n]; s = Select[Range[p/2], PowerMod[3, #, p] == p  1 &, 1]; If[s == {}, 0, s[[1]]], {n, 100}]


CROSSREFS

Cf. A062117 (order of 3 mod prime(n)).


KEYWORD

nonn


AUTHOR



STATUS

approved



