login
A240656
T(n,k)=Number of nXk 0..1 arrays with no element equal to exactly one horizontal or vertical neighbor, with new values 0..1 introduced in row major order
7
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 9, 3, 1, 1, 6, 17, 17, 6, 1, 1, 10, 43, 91, 43, 10, 1, 1, 21, 136, 352, 352, 136, 21, 1, 1, 42, 402, 1545, 2456, 1545, 402, 42, 1, 1, 86, 1180, 7154, 16629, 16629, 7154, 1180, 86, 1, 1, 179, 3518, 33269, 118863, 184819, 118863, 33269, 3518
OFFSET
1,5
COMMENTS
Table starts
.1...1.....1......1........1..........1............1..............1
.1...2.....2......3........6.........10...........21.............42
.1...2.....9.....17.......43........136..........402...........1180
.1...3....17.....91......352.......1545.........7154..........33269
.1...6....43....352.....2456......16629.......118863.........863435
.1..10...136...1545....16629.....184819......2076117.......23697768
.1..21...402...7154...118863....2076117.....37066859......666849212
.1..42..1180..33269...863435...23697768....666849212....18940533171
.1..86..3518.154974..6296517..272201307..12062165754...540011330454
.1.179.10525.724237.46082534.3137010024.218944306666.15442088872458
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 15]
k=4: [order 50]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0....0..0..0..0....0..1..1..0....0..1..1..1....0..1..1..1
..0..1..0..0....0..0..1..0....1..1..1..1....1..1..1..1....1..1..1..1
..0..0..1..1....0..0..0..0....1..1..0..1....1..1..1..1....1..1..1..0
..0..0..1..1....0..0..0..0....0..1..1..1....0..1..1..0....1..1..0..1
CROSSREFS
Column 2 is A240513(n-2)
Sequence in context: A174446 A071201 A318045 * A106476 A101566 A331447
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 09 2014
STATUS
approved